生成式AI技术对未来知识生产模式的颠覆性影响:跨学科案例分析

引言
随着人工智能技术的迅猛发展,生成式AI作为一种革命性技术正在深刻地改变人类知识生产和学术研究的范式。生成式AI不仅能够创建原创内容,还能模拟人类思维过程,处理和生成大量数据,从而在各个学科领域展现出广阔的应用前景。本研究报告旨在深入探讨生成式AI技术对未来知识生产模式的颠覆性影响,通过对比传统学术研究与AI辅助研究的范式差异,并选取医学、法学、文学、经济学和艺术学等五个典型领域进行深度案例分析,揭示生成式AI如何重塑知识生产的方式和内涵。
生成式AI的基本概念与技术特点
生成式AI的定义
生成式AI是一种能够创建原创内容的人工智能技术,它不同于传统的判别式AI。判别式AI主要用于根据已有数据进行分类或预测,而生成式AI则能够生成全新的内容,包括文本、图像、音频、视频等多种形式[1]。生成式AI模型依赖于基于大数据集训练的深度学习模型,能够创建与训练数据相似的新内容[1]。
IBM将生成式AI定义为"能够创建原创内容(例如文本、图像、视频、音频或软件代码)以响应用户的提示或请求"的人工智能技术[1]。这种技术的本质在于其能够生成与训练数据相似但全新的内容,而非简单地复制或重组现有数据。
生成式AI的技术特点
生成式AI的核心技术特点主要包括以下几个方面:
基于大模型的深度学习:生成式AI依赖于复杂的深度学习模型,这些模型通常包含大量的参数,能够模拟人脑的学习和决策过程[1]。
大规模数据训练:生成式AI模型需要在海量数据集上进行训练,这些数据集涵盖广泛的领域知识,使模型能够理解和生成多种类型的内容[1]。
多模态内容生成能力:生成式AI不仅能够生成文本,还能创建图像、音频、视频等多种形式的内容,这种多模态的能力使其在各学科领域都有广泛的应用前景[1]。
创造性内容生成:生成式AI能够生成具有创意性的内容,而不仅仅是对现有数据的简单复制或重组,这使其在艺术创作、文学写作等领域具有特殊价值[2]。
自监督学习能力:生成式AI模型能够利用无监督学习或半监督学习方法进行训练,无需大量人工标注的数据,这大大降低了训练成本并提高了模型的泛化能力[1]。
生成式AI与传统AI的区别
生成式AI与传统AI的主要区别在于其生成新内容的能力。传统AI(通常是判别式AI)主要通过分析现有数据来执行特定任务,如分类、预测或决策。相比之下,生成式AI能够创建与训练数据相似但全新的内容,这种能力使其在知识生产和内容创作方面具有革命性的意义。
具体而言,传统AI主要关注如何从数据中提取信息或做出预测,而生成式AI则关注如何根据已有数据生成新的、有意义的内容。这种区别使得生成式AI在学术研究中能够扮演更加主动的角色,不仅能够辅助研究,还能积极参与知识的创造过程。
传统学术研究与AI辅助研究的范式差异
传统学术研究的基本范式
传统学术研究主要遵循以下研究范式:
基于实验和观察的研究方法:传统学术研究通常依赖于实验设计和数据收集,研究者通过观察和分析数据来验证假设或提出新的理论。
文献综述和理论构建:研究者需要通过阅读大量文献来了解已有研究成果,并在此基础上构建新的理论框架或提出新的研究问题。
线性研究过程:传统学术研究通常遵循线性研究过程,包括问题提出、文献综述、研究设计、数据收集、数据分析和结论总结等步骤。
个体或小团队合作:传统学术研究通常由个体研究者或小型研究团队完成,团队成员之间的合作和交流主要依赖于面对面会议或电子邮件等传统通信方式。
知识生产的控制权:在传统学术研究中,知识的生产主要掌握在专业研究者手中,发表和传播渠道相对有限,学术评价主要依赖于同行评议和引用次数等指标。
AI辅助研究的新范式
随着生成式AI技术的发展,学术研究正在形成一种新的研究范式:
数据驱动的研究方法:AI辅助研究更加注重大数据的收集和分析,生成式AI能够从海量数据中提取有价值的模式和见解,帮助研究者发现新的知识。
自动化文献综述:生成式AI能够快速处理和分析大量文献,帮助研究者更高效地进行文献综述。在过去,学者们需要花费大量时间在图书馆中翻阅各种资料,而AI技术大大提高了这一过程的效率
非线性研究过程:AI辅助研究的流程更加灵活和非线性,研究者可以随时调整研究方向和方法,生成式AI能够提供即时的反馈和建议,加速研究进程。
大规模协作研究:生成式AI促进了全球范围内的研究协作,研究者可以通过共享数据和模型来加速知识的生产和传播。
知识生产的民主化:生成式AI降低了学术研究的门槛,使更多的研究者能够参与知识生产过程,同时提高了学术评价的效率和公正性
两种研究范式的比较
传统学术研究与AI辅助研究的范式差异主要体现在以下几个方面:
研究效率:AI辅助研究显著提高了研究效率,生成式AI能够快速处理和分析大量数据,帮助研究者更高效地完成文献综述和数据分析等任务

创造性与批判性思维:传统学术研究强调研究者的创造性思维和批判性思考能力,而AI辅助研究则更注重如何有效利用AI工具来增强研究的创造力和批判性[6
研究范式的演进:传统学术研究主要遵循经验范式、理论范式和计算范式,而AI辅助研究则代表了新的研究范式——AI范式。几千年前是经验范式,几百年前是理论范式,几十年前是计算范式,十几年前是数据范式,而今是AI范式[17]。
知识生产模式:传统学术研究中知识的生产主要由专业研究者控制,而AI辅助研究则促进了知识生产的民主化,使更多人能够参与知识创造过程[5]。
研究范式的演化方向:AI驱动科研新范式的演化方向由"科研自动化"向"科研模型化"、"科研智能化"发展[16]。这意味着AI辅助研究不仅能够自动化重复性任务,还能构建更精确的研究模型,并最终实现研究过程的智能化。
伦理与规范:AI辅助研究面临着新的伦理挑战和规范问题,如AI生成内容的知识产权归属、学术诚信的维护以及数据隐私的保护等[19]。
生成式AI在医学领域的应用与影响
医学领域的应用案例
生成式AI在医学领域的应用已经相当广泛,涵盖了医学教育、辅助诊断、临床决策支持、医学影像分析等多个方面:
医学教育:生成式AI可以创建虚拟患者案例,帮助医学生进行临床实践训练。例如,美国一些医学院已经开始使用生成式AI工具来模拟临床场景,提高学生的临床技能[23]。
辅助诊断:生成式AI可以分析患者的症状、体征和检查结果,帮助医生做出更准确的诊断。华盛顿大学医学院和科技初创公司Whiterabbit.ai的一项研究发现,人工智能可能能够检测出早期乳腺癌病例并减少假阳性,该公司在12248张二维数字乳房X光片上进行了测试[21]。
临床决策支持:生成式AI可以整合最新的医学研究和临床指南,为医生提供个性化的治疗建议。例如,一些AI系统可以分析患者的病史和当前状况,推荐最佳的治疗方案[23]。
医学影像分析:生成式AI可以自动分析医学影像,帮助医生发现病变和异常。例如,公司医疗AI应用接入了大型视觉语言模型(LvLM),应用于食品、药品、体检报告和皮肤病检测领域。通过健康报告扫描器,用于解读体检报告,分析和提取关键信息[22]。
患者互动:生成式AI可以创建自动化患者互动平台,提供及时的信息和支持。例如,Hyro利用生成式人工智能技术为医疗保健提供HIPAA合规的对话平台,自动化患者互动并提供及时的信息和支持,以增强用户体验[20]。
对医学知识生产模式的影响
生成式AI对医学知识生产模式产生了深远的影响:
知识生产效率的提升:生成式AI能够快速处理和分析大量医学数据,显著提高了医学研究的效率。例如,生成式AI可以自动化文献综述过程,帮助研究者更快速地了解研究领域的最新进展[15]。
研究范式的转变:生成式AI推动了医学研究范式从传统的经验医学向数据驱动医学的转变。在传统医学研究中,医生主要依靠个人经验和有限的样本数据做出决策,而生成式AI可以通过分析海量的医疗数据,发现隐藏的模式和规律,为医学研究提供新的视角[16]。
医学教育模式的变革:生成式AI正在改变医学教育的传统模式。传统的医学教育主要依赖于课堂讲授和临床实习,而生成式AI可以创建虚拟患者和临床场景,为医学生提供更丰富、更安全的实践机会[23]。
医学知识的可及性:生成式AI使得医学知识更加易于获取和理解。例如,生成式AI可以将复杂的医学研究转化为易于理解的解释,帮助医生和患者更好地理解疾病和治疗方法[21]。
医学研究伦理的挑战:生成式AI在医学领域的应用也带来了新的伦理挑战,如患者数据的隐私保护、AI决策的透明度和可解释性等[18]。
生成式AI在法学领域的应用与影响
法学领域的应用案例
生成式AI在法学领域的应用主要集中在法教义学、著作权研究、个人信息保护和司法实践等方面:
法教义学研究:生成式AI可以协助法律学者进行法教义学研究,特别是在大陆法系国家的法律解释方法方面。生成式AI在法教义学中的应用可能会引发"破坏式创新",改变传统的法学研究方式[30]。
著作权研究:生成式AI在著作权研究中具有重要作用,特别是在AI生成内容的知识产权归属问题上。一篇研究论文分析了AI生成物的"独创性"认定标准,结合武汉"AI生成图侵权案"等司法实践系统探讨AI生成内容的权利保护问题[31]。
个人信息保护:生成式AI在个人信息保护领域面临新的挑战和风险,需要通过规制来确保其合法、安全、透明地应用[32]。
司法实践:生成式AI在司法实践中的应用日益广泛,特别是在类案检索方面。例如,北京北大英华科技公司展示了生成式人工智能在类案检索中的前沿技术和应用[34]。
法律文件生成:生成式AI可以自动生成法律合同、法律意见书等法律文件,提高法律工作的效率和准确性。
对法学知识生产模式的影响
生成式AI对法学知识生产模式的影响主要体现在以下几个方面:
法律研究效率的提升:生成式AI能够快速处理和分析大量法律文献和案例,显著提高了法律研究的效率。例如,生成式AI可以自动化文献综述过程,帮助法律学者更快速地了解研究领域的最新进展[15]。
法律知识的系统化:生成式AI可以帮助法律学者将分散的法律知识系统化,构建更完整的法律理论体系。例如,生成式AI可以分析不同法律体系之间的异同,帮助学者发现新的法律理论视角[30]。
法律教育模式的变革:生成式AI正在改变法律教育的传统模式。传统的法律教育主要依赖于课堂讲授和案例分析,而生成式AI可以创建虚拟法庭场景和法律咨询案例,为法学生提供更丰富、更真实的实践机会。
法律知识的可及性:生成式AI使得法律知识更加易于获取和理解。例如,生成式AI可以将复杂的法律条文转化为易于理解的解释,帮助公众更好地理解法律和维护自身权益。
法律研究伦理的挑战:生成式AI在法学领域的应用也带来了新的伦理挑战,如法律数据的隐私保护、AI决策的透明度和可解释性等[19]。
生成式AI在文学领域的应用与影响
文学领域的应用案例
生成式AI在文学领域的应用主要集中在文学创作、文学评论和文学研究等方面:
文学创作:生成式AI可以创作诗歌、小说等文学作品。例如,一些研究团队利用生成式AI创作出风格独特的文学作品[36]。互联网上已经出现了大量关于如何利用ChatGPT写出高质量小说的指令攻略,这些攻略均不提倡一次性生成,而是主张对人工智能进行分阶段式的指令性引导[35]。
文学评论:生成式AI可以分析文学作品的主题、风格和结构,提供深入的文学评论。例如,生成式AI可以分析小说中的角色发展、情节结构和主题表达,帮助读者更好地理解作品。
文学研究:生成式AI可以辅助文学研究者进行文献综述和数据分析,提高研究效率。例如,生成式AI可以快速检索和分析大量文学评论和研究论文,帮助研究者发现研究趋势和热点问题。
文学教育:生成式AI可以创建互动式文学学习平台,帮助学生更好地理解文学作品。例如,生成式AI可以解释文学作品中的难懂词汇和历史背景,提高学生的文学素养。
文学创作辅助:生成式AI可以为文学创作者提供写作建议和灵感,帮助他们克服创作瓶颈。例如,生成式AI可以根据用户提供的主题和风格,生成相关的写作素材和灵感。
对文学知识生产模式的影响
生成式AI对文学知识生产模式的影响主要体现在以下几个方面:
文学创作方式的变革:生成式AI改变了传统的文学创作方式,从纯粹的人类创作到人机协作创作。这种变革使得文学创作变得更加高效和多样化,但也引发了关于创作主体性和原创性的问题[37]。
文学研究方法的创新:生成式AI为文学研究提供了新的方法和工具,如文本挖掘、情感分析和风格识别等。这些方法可以帮助研究者从海量的文学作品和评论中提取有价值的信息,发现新的研究视角[37]。
文学知识的传播方式:生成式AI改变了文学知识的传播方式,使得文学知识更加易于获取和理解。例如,生成式AI可以将复杂的文学理论转化为易于理解的解释,帮助更多人了解文学知识。
文学教育模式的变革:生成式AI正在改变传统的文学教育模式。传统的文学教育主要依赖于课堂教学和教材阅读,而生成式AI可以创建互动式的学习平台,为学生提供更丰富、更个性化的学习体验。
文学创作伦理的挑战:生成式AI在文学领域的应用也带来了新的伦理挑战,如AI生成内容的原创性认定、创作署名权的归属等[39]。从作品的独创性程度来看,生成式AI如ChatGPT能够根据输入的指令生成具有新颖性和独立性的表达内容,且这种表达能够复制,符合著作权法关于作品的规定。但是,这些内容的创作主体认定仍然存在争议。
生成式AI在经济学领域的应用与影响
经济学领域的应用案例
生成式AI在经济学领域的应用主要集中在经济研究、金融分析、政策制定和经济教育等方面:
经济研究:生成式AI可以辅助经济学家进行经济数据分析和模型构建。例如,美国经济学会首次就GPT大模型对经济学研究影响发文,分析了生成式AI在构思和撰写论文、文献综述、数据分析等方面的应用案例[42]。
金融分析:生成式AI可以分析金融市场数据,预测经济趋势和市场走向。例如,生成式AI可以从会议纪要、市场资讯、经营分析报告等大量非结构化文档中快速、准确地找到项目承做人员所需的信息,并以问答的方式输出[43]。
政策制定:生成式AI可以辅助政府部门和国际组织进行政策制定和经济预测。例如,生成式AI可以模拟不同政策的经济影响,帮助决策者做出更科学的决策。
经济教育:生成式AI可以创建互动式经济学习平台,帮助学生更好地理解经济理论和实践。例如,生成式AI可以解释复杂的经济模型和理论,提供个性化的学习建议。
经济报告生成:生成式AI可以自动生成经济报告、市场分析和投资建议,提高经济工作的效率和准确性。
对经济学知识生产模式的影响
生成式AI对经济学知识生产模式的影响主要体现在以下几个方面:
经济研究效率的提升:生成式AI显著提高了经济学研究的效率。经济学家可以通过利用生成式人工智能来自动化微任务,从而显著提升生产力。随着人工智能系统性能的持续提升,这些收益也将不断增加[42]。
经济研究方法的创新:生成式AI为经济学研究提供了新的方法和工具,如自然语言处理、大数据分析和机器学习等。这些方法可以帮助研究者从海量的经济数据和文本中提取有价值的信息,发现新的经济规律[40]。
经济知识的传播方式:生成式AI改变了经济知识的传播方式,使得经济知识更加易于获取和理解。例如,生成式AI可以将复杂的经济理论转化为易于理解的解释,帮助更多人了解经济学知识。
经济教育模式的变革:生成式AI正在改变传统的经济教育模式。传统的经济教育主要依赖于课堂教学和教材阅读,而生成式AI可以创建互动式的学习平台,为学生提供更丰富、更个性化的学习体验。
经济研究伦理的挑战:生成式AI在经济学领域的应用也带来了新的伦理挑战,如经济数据的隐私保护、AI决策的透明度和可解释性等。
生成式AI在艺术学领域的应用与影响
艺术学领域的应用案例
生成式AI在艺术学领域的应用主要集中在艺术创作、艺术教育和艺术研究等方面:
艺术创作:生成式AI可以创作绘画、音乐、舞蹈等艺术作品。例如,艺术家Refik Anadol利用NVIDIA StyleGAN2 ADA创作AI艺术,通过捕获MoMA大量现代艺术存档的机器"幻境",创建1024维嵌入式内容[46]。
艺术教育:生成式AI可以创建互动式艺术学习平台,帮助学生更好地理解艺术理论和实践。例如,DeepArt.io(瑞士)提供了一种名为"神经网络风格转换"的服务,能够将用户提供的照片或图像,通过与著名画家的作品相结合,生成一幅全新的艺术作品[47]。
艺术研究:生成式AI可以辅助艺术研究者进行艺术数据分析和历史研究。例如,通过研究近年来的AI艺术案例,编写组可以深入了解这场正在进行的文化与技术的交融与变革[48]。
艺术创作辅助:生成式AI可以为艺术家提供创作建议和灵感,帮助他们克服创作瓶颈。例如,"AI梵高"项目通过创意数据编码赋能艺术科技,利用神经网络创建一些充满艺术感的美丽作品[49]。
艺术文化传播:生成式AI可以促进艺术文化的传播和创新,如通过AI技术将传统艺术形式与现代技术相结合,创造出新的艺术表达方式。
对艺术学知识生产模式的影响
生成式AI对艺术学知识生产模式的影响主要体现在以下几个方面:
艺术创作方式的变革:生成式AI改变了传统的艺术创作方式,从纯粹的人类创作到人机协作创作。这种变革使得艺术创作变得更加高效和多样化,但也引发了关于艺术创作主体性和原创性的问题[]。
艺术研究方法的创新:生成式AI为艺术学研究提供了新的方法和工具,如图像识别、风格分析和情感识别等。这些方法可以帮助研究者从海量的艺术作品和评论中提取有价值的信息,发现新的艺术规律。
艺术知识的传播方式:生成式AI改变了艺术知识的传播方式,使得艺术知识更加易于获取和理解。例如,生成式AI可以将复杂的艺术理论转化为易于理解的解释,帮助更多人了解艺术知识。
艺术教育模式的变革:生成式AI正在改变传统的艺术教育模式。传统的艺术教育主要依赖于课堂教学和实践训练,而生成式AI可以创建互动式的学习平台,为学生提供更丰富、更个性化的学习体验。
艺术创作伦理的挑战:生成式AI在艺术领域的应用也带来了新的伦理挑战,如AI生成艺术的原创性认定、创作署名权的归属等。
生成式AI对知识生产模式的颠覆性影响
知识生产效率的革命性提升
生成式AI对知识生产效率的提升主要体现在以下几个方面:
文献综述的自动化:生成式AI能够快速处理和分析大量文献,帮助研究者更高效地进行文献综述。在过去,学者们需要花费大量时间在图书馆中翻阅各种资料,而AI技术大大提高了这一过程的效率[15]。
数据分析的加速:生成式AI能够快速分析和处理大量数据,帮助研究者发现数据中的模式和规律。例如,在医学研究中,生成式AI可以分析患者的症状、体征和检查结果,帮助医生做出更准确的诊断[21]。
内容生成的自动化:生成式AI可以自动生成报告、论文和分析,大大缩短了知识生产的周期。例如,在经济学研究中,生成式AI可以帮助经济学家自动化微任务,显著提升生产力[。
跨学科研究的促进:生成式AI能够整合不同学科的知识和数据,促进跨学科研究。例如,生成式AI可以将医学、生物学和计算机科学等领域的知识结合起来,推动医学研究的发展。
知识生产模式的范式转变
生成式AI正在推动知识生产模式的范式转变,主要体现在以下几个方面:
从个体研究到协作研究:生成式AI促进了全球范围内的研究协作,研究者可以通过共享数据和模型来加速知识的生产和传播。这种协作模式打破了传统学术研究的地域限制,使知识生产更加全球化。
从线性研究到非线性研究:传统学术研究通常遵循线性研究过程,而生成式AI辅助的研究流程更加灵活和非线性,研究者可以随时调整研究方向和方法,生成式AI能够提供即时的反馈和建议,加速研究进程。
从封闭研究到开放研究:生成式AI促进了研究过程的开放和透明,研究数据和方法可以更容易地被共享和验证。这种开放性有助于提高研究的可靠性和可重复性。
从专业垄断到民主化:生成式AI降低了学术研究的门槛,使更多的研究者能够参与知识生产过程。学术评价也变得更加多元化,不再仅仅依赖于传统的评价指标[5]。
知识生产伦理的挑战与应对
生成式AI在知识生产过程中带来了新的伦理挑战,需要我们认真应对:
数据隐私与安全:生成式AI需要大量数据进行训练和应用,如何保护这些数据的隐私和安全是一个重要问题。在医学和法学等敏感领域,数据隐私保护尤为重要。
学术诚信与原创性:生成式AI生成的内容可能难以区分原创性和抄袭,如何维护学术诚信是一个重要挑战。在文学和艺术等领域,AI生成内容的原创性认定引发了广泛讨论[39]。
算法偏见与公平性:生成式AI可能继承和放大训练数据中的偏见,导致不公平的结果。如何确保AI系统的公平性和无偏见是一个重要问题。
透明度与可解释性:生成式AI的决策过程通常是一个"黑箱",缺乏透明度和可解释性。在司法和医疗等关键领域,AI决策的透明度和可解释性至关重要。
人机协作与责任归属:在人机协作的知识生产过程中,如何确定责任归属是一个复杂问题。当AI生成的内容出现问题时,责任应该由谁承担?
结论与展望
生成式AI对知识生产模式的全面重塑
生成式AI正在对知识生产模式进行全面重塑,这种重塑不仅体现在效率的提升上,更体现在知识生产范式的根本转变上。从医学、法学、文学、经济学和艺术学等领域的应用案例可以看出,生成式AI正在改变各学科的知识生产方式、研究方法和传播模式。
传统学术研究主要依赖于个体或小团队的线性研究过程,而生成式AI辅助的研究则更加注重数据驱动、自动化和协作化。这种转变不仅提高了研究效率,还促进了跨学科研究和知识的民主化。
未来发展趋势与研究方向
生成式AI在知识生产领域的未来发展将呈现以下趋势和研究方向:
多模态知识生产的深化:未来的生成式AI将更加注重多模态知识的整合和生产,如文本、图像、音频和视频等多模态内容的协同生成和理解。
知识生产自动化的拓展:生成式AI的知识生产自动化能力将进一步拓展,从辅助写作和数据分析到完整的知识体系构建和理论创新。
人机协作模式的优化:未来的知识生产将更加注重人机协作模式的优化,充分发挥人类的创造力和批判性思维,以及AI的处理能力和效率。
伦理框架的完善:随着生成式AI在知识生产中的应用越来越广泛,相关的伦理框架和规范将不断完善,以应对数据隐私、学术诚信和算法偏见等挑战。
学科交叉研究的深化:生成式AI将促进各学科之间的交叉研究,推动知识生产的跨学科融合和创新。
对学术研究的启示与建议
生成式AI对学术研究的启示和建议主要包括以下几个方面:
拥抱技术变革:学术研究者应该积极拥抱生成式AI等新技术,将其作为提升研究效率和创新能力的工具,而不是简单的替代品。
加强伦理意识:在使用生成式AI进行知识生产时,研究者应该增强伦理意识,注重数据隐私保护、学术诚信维护和算法公平性等问题。
培养跨学科能力:未来的学术研究将更加注重跨学科能力的培养,研究者需要具备多学科知识和技能,以应对复杂的研究问题。
构建开放协作的研究生态:学术界应该构建更加开放和协作的研究生态,促进数据、模型和知识的共享,加速知识的生产和传播。
重视人机协作的研究模式:未来的学术研究将更加注重人机协作的研究模式,充分发挥人类和AI各自的优势,共同推动知识创新。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

德宿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值