【抽代复习笔记】22-群(十六):模n的剩余类加群

例3:证明,群(Z,+)为循环群(即:全体整数集Z关于数的加法作成循环群)。

证:1是整数,所以1∈Z;

①当n = 0时,1^n = 1^0 = 0(0个1相加,结果是0);

②当n>0时,n = 1+1+...+1(n个1相加) = 1^n;

③当n<0时,n = (-1)+(-1)+...+(-1)(-n个-1相加) = 1^(-1) + 1^(-1) + ... +1^(-1) = [1^(-1)]^(-n) = 1^n = (-1)^(-n)。

综上,对任意的n∈Z,都有1^n = n,所以(Z,+)是一个循环群,其一个生成元为1;同理可证-1也是其一个生成元。

 

例4:在模5的剩余类集合Z5上定义:对于任意的[a],[b]∈Z5,有[a]+[b] = [a+b],则证(Z5,+)是一个循环群。([a]表示被5整除后余数为a的数的集合)

证:(1)先证(Z5,+)是一个群:

①对任意的[a],[b]∈Z5,都有[a]+[b] = [a+b]∈Z5,所以满足了群公理的第一条封闭性;

②对任意的[a],[b],[c]∈Z5,有([a]+[b])+[c] = [a+b]+[c] = [a+b+c],[a]+([b]+[c]) = [a]+[b+c] = [a+b+c],所以([a]+[b])+[c] = [a]+([b]+[c]),因此适合结合律,即满足了群公理的第二条结合律;

③对于[0]∈Z5以及任意的[a]∈Z5,都有[0]+[a] = [0+a] = [a],因此[0]是Z5中的单位元,因此也满足了群公理的第四条;

④对于任意的[a]∈Z5,都有[-a]∈Z5,使得[a]+[-a] = [a-a] = [0],所以[a]与[-a]互为逆元,因此也满足了群公理的第五条。

综上,根据群的第二判定定理,我们可以判断(Z5,+)是一个群。

(2)下证(Z5,+)是一个循环群:

对于[1]∈Z5,以及任意的[a]∈Z5,

①当a = 0时,[a] = [1]^0 = [0](0个[0]相加,结果是0);

②当a>0时,[a] = [1]+[1]+...+[1] = [1]^a;

③当a<0时,[a] = [-1]+[-1]+...+[-1](-a个[-1]相加) = [-1]^(-a) = [1^(-1)]^(-a) = [1]^a.

综上,对任意的[a]∈Z5,都有[a] = [1]^a。

所以(Z5,+)是一个循环群,其一个生成元为[1]。

同理可证,[2],[3],[4]也是(Z5,+)的生成元(因为[2]+[2]+[2] = [2]^3 = [6] = [1],[3]+[3] = [3]^2 = [6] = [1],[4]+[4]+[4]+[4] = [4]^4 = [16] = [1])。

 

将上述例子中的5换成n,我们将(Zn,+)称为“模n的剩余类加群”。

 

(待续……)

 

  • 6
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值