离散数学 第十五章 半群与群

目录

15.1 半群

15.1.1 幂

15.1.2 子半群

15.2 群和子群

15.3 交换群和循环群

15.4 陪集与拉格朗日定理

15.5 正规子群与离群

15.6 群的同态与同构


15.1 半群

15.1.1 幂

※设<S,\ast >是一个半群,由于\ast满足结合律,可定义幂运算,即对\forall x\in S,可定义:                

                                                        ​​​​​​​        x'=x,x^{2}=x\ast x

        若<S,\ast >有单位元e,——>x^{0}=e

        ①a^{m}\ast a^{n}=a^{m+n}                   ②(a^{m})^{n}=a^{mn}

定理:有限半群<S,\ast >必有幂等元,即存在a\in S,a^{2}=a

        若S不是有限集,则不一定有幂等元

15.1.2 子半群

定义:若<S,\ast >是半群(含幺半群),T是S的非空子集,且T对运算\ast是封闭的,则称<T,\ast >是半群<S,\ast >的子半群(含幺子半群)。

15.2 群和子群

剩余类加群

设Zk表示整数集Z上的模k剩余类集合,即:Zk={[0],[1],[2,],...,[k-1]}

在Zk上定义运算\oplus\otimes如下:

        [i]\oplus [j]=[t]\Leftrightarrow (i+j)\equiv t(mod\,k)

        [i]\otimes [j]=[t]\Leftrightarrow ij\equiv t(mod\, k)

※定理:若<G,\ast >是半群,并且对\forall a,b\in G,都存在x,y\in G使x\ast a=b,a\ast y=b,则<G,\ast >是群。群中元素数目称为群的阶。

 性质:1)群G中满足消去律

            2)群G中除幺元e外无其他幂等元

            3)群G的运算表中任意一行(列)都没有两个相同的元素

※定理:设<G,\ast >是群,a\in G。构造映射\Phi _{A}:G\rightarrow G,使得对\forall x\in G,\Phi _{A}(x)=a\ast x

 令H=\left \{ \Phi _{a}|a\in G\right \},则对于函数的复合运算"\circ "<H,\circ >是群。(由一个已知群构造出一个新的群

证明方法:(1)封闭性   (2)结合律   (3)幺元    (4)逆元

子群

※设 <G,\ast >是群,S是G的一个非空子集,若S也是群,则称<S,\ast ><G,\ast >的一个子群。

平凡子群:1)<\left \{ e \right \},\ast >

                  2)<G,\ast >

真子群:1)S\neq \left \{ e \right \},S\subset G

              2)子群<S,\ast >

※定理:设<G,\ast >是一个群,对\forall a\in G,令S=\left \{ a^{n}|n\in Z,Z\,is\, integer \right \},则<S,\ast >

是 <G,\ast >的子群。

※定理:设<G,\ast >是一个群,<S,\ast ><G,\ast >的子群,则:

        1)子群<S,\ast >的幺元e_{S}也是群<G,\ast >的幺元e_{G};

        2)对\forall a\in S,a在S中的逆元(a_{S})^{-1}就是a在G中的逆元(a_{G})^{-1}

※定理:设<G,\ast >是一个群,S是G的一个非空子集,则<S,\ast ><G,\ast >的子群的充要条件是:\forall a,b\in S, \, \,a\ast b^{-1}\in S

推广:设<G,\ast >是一个群,H1,H2,...,Hn是G的n个子群,则有H=H1\cap H2\cap ....\cap Hn是G的子群。

※模d同余的数的全体构成的集合称为一个同余类。

        ​​​​​​​        ​​​​​​​        [n]_{d}=\left \{ x|n\equiv x(mod)d \right \}                n=x+kd

🐖:Zk表示整数集Z上的模k剩余类集合

                Zk={[0],[1],[2],...,[k-1]}

                ①<Z_{k},\oplus >是群(剩余类加群)。[0]是\oplus的幺元,每元[i]的 \oplus逆元是[k-i]。

                ②<Z_{k},\otimes >不是群,幺元为[1],[0]无逆元,所以仅仅是含幺半群。

                !!<Z_{k}-\left \{ [0] \right \},\otimes>不一定是群

 ※设n个元素的集合A上的全体置换构成集合Sn,证明<S_{n},\circ >构成群。(n次对称群

15.3 交换群和循环群

※交换群

定义:若群<G,\ast >中的运算"\ast "满足交换律,则称该群<G,\ast >是一个交换群(Abel)

定理:设<G,\ast >是一个群,则<G,\ast >为交换群的充分必要条件是:\forall a,b\in G,\,\,\,(a\ast b)^{2}=a^{2}\ast b^{2}

 ※循环群

定义:设<G,\ast >是一个群,若G中存在元素a,使得G=\left \{ a^{k}|k\in Z \right \},则称<G,\ast >是(由a所生成的)循环群;而a称为G的一个生成元,记作G=(a)​​​​​​​

注:a^{k}=a\ast a\ast a\ast...\ast a共k个元素乘积

a^{0}=e\, \,\, ,a^{-k}=(a^{k})^{-1}

证明任何一个循环群必是交换群

<G,\ast >是一个循环群,a是生成元,则\forall x,y\in G,必有m,n\in I使得x=a^{m},\,\,y=a^{n}

x\ast y=a^{m}\ast a^{n}=a^{m+n}=a^{n+m}=a^{n}\ast a^{m}=y\ast x

※元素的周期

设a是群G的生成元,对(a)=\left \{ a^{n}|n\in Z \right \},有以下两种情况

        1)存在整数i和j(i\neq j)\rightarrow a^{i}=a^{j}

        2)\forall i,j(i\neq j)\rightarrow a^{i}\neq a^{j}

定义:设<G,\ast >是一个群,对\forall a\in G,若有a^{n}=en是使得a^{n}=e成立的最小正整数)—>n为元素a的周期或阶数;若n不存在,周期为∞

定理: 设<G,\ast >是一个群,对\forall a\in G,若a的周期为n,则:

        ①a^{m}=e当且仅当  n|m

        ②a^{i}=a^{j}当且仅当  n|(i-j)

        ③由a生成的子群恰有n个元素

        ​​​​​​​        (a)=\left \{ e,a,a^{2},...,a^{n-1} \right \}

证明:循环群的子群必是循环群

15.4 陪集与拉格朗日定理

※陪集

定义: 设<G,\ast >是一个群,<H,\ast>是 <G,\ast >的任一个子群,a\in G

①集合:Ha=\left \{ b\ast a|b\in H \right \}称为由a确定的H在<G,\ast >中的一个右陪集;a\in Ha\rightarrow代表元

②集合:aH=\left \{ a\ast b|b\in H \right \}称为由a确定的H在<G,\ast >的一个左陪集;a\in aH\rightarrow代表元

由左(右)陪集构成的集合的基数称为子群的指数

几点性质:

1.H关于同一元素的右,左陪集不一定相同。

2.凡是同属某个左(右)陪集的元素,它们对应的左(右)陪集相同

例:(1 3)H=(1 2 3)H={(1 3),(1 2 3)}

3.任何两个左(右)陪集要么相同,要么无公共元素

4.所有左(右)陪集的元素数目相同

定理:设H是群G的子群,a,b\in G,在G中建立二元关系:

        ​​​​​​​        ​​​​​​​a \,R \,b\Leftrightarrow b\in aH,则R是G上的一个等价关系

定理:设<H,\ast>是群<G,\ast >的子群,则H的所有左(右)陪集都是等势的。

                (等势:两个集合能建立双射)

 同理:设<H,\ast>是 群<G,\ast >的子群,则H的所有陪集的基数相等,且对于\forall a\in G,\,\,\,|aH|=|H|

※拉格朗日定理

定理:一个n阶有限群 群<G,\ast >的任一个子群<H,\ast>的阶必是n的因子。即若|G|=n,|H|=m,则k=\frac{|G|}{|H|}=\frac{n}{m}是一个整数,且称k为G内H的指数,k=关于H的一切不同的左(右)陪集的个数。

15.5 正规子群与离群

※不变(正规)子群

定义:设<H,\ast>是群<G,\ast>的一个子群,如果对\forall a\in G,都有aH=Ha,则称H是G的不变子群,——>H的一个左,右陪集叫做H的陪集。

定理:群<G,\ast>的子群<H,\ast>是不变子群<=>对\forall a\in G,\,\,\,aHa^{-1}\subseteq H

即:\forall h\in H,\,\,\,\,a\ast h\ast a^{-1}\in H

 ※商群

定义:设<H,\ast><G,\ast>的一个正规子群,G/H表示G的所有陪集的集合,则<G/H,\circ >是一个群,——>商群。

\forall aH,bH\in G/H,\,\,aH\circ bH=(a\ast b)H

15.6 群的同态与同构

​​​​​​​ 

证明两个代数系统是同构的方法

1.令f(x)为一个函数,说明f(x)是一个函数

2.f是一个双射

        1)单射   \forall x,y\in D,f(x)\neq f(y)

        2)满射  \forall y\in D,\,\,\,\exists x,\,\,f(x)=y

几点性质:

定理:设<S,\ast><T,\circ >是两个代数系统,f:S—>T是满同态,则:

1)如果S是半群=>T是半群

2)如果S是群=>T是群

※同态核

定义:设f是群<G,\ast><H,\circ>的同态映射,令k=\left \{ a|a\in G\wedge f(a)=e' \right \},e'是H的单位元——>k为f的同态核,f(G)=\left \{ f(a)|a\in G \right \}称为f的象集。

  • 1
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值