目录
15.1 半群
15.1.1 幂
※设是一个半群,由于
满足结合律,可定义幂运算,即对
可定义:
若有单位元e,——>
① ②
定理:有限半群必有幂等元,即存在
若S不是有限集,则不一定有幂等元
15.1.2 子半群
定义:若是半群(含幺半群),T是S的非空子集,且T对运算
是封闭的,则称
是半群
的子半群(含幺子半群)。
15.2 群和子群
⭐剩余类加群
※设Zk表示整数集Z上的模k剩余类集合,即:Zk={[0],[1],[2,],...,[k-1]}
在Zk上定义运算和
如下:
⭐群
※定理:若是半群,并且对
,都存在
使
,则
是群。群中元素数目称为群的阶。
性质:1)群G中满足消去律
2)群G中除幺元e外无其他幂等元
3)群G的运算表中任意一行(列)都没有两个相同的元素
※定理:设是群,
。构造映射
,使得对
令,则对于函数的复合运算
,
是群。(由一个已知群构造出一个新的群)
证明方法:(1)封闭性 (2)结合律 (3)幺元 (4)逆元
⭐子群
※设 是群,S是G的一个非空子集,若S也是群,则称
是
的一个子群。
平凡子群:1)
2)
真子群:1)
2)子群
※定理:设是一个群,对
,令
,则
是 的子群。
※定理:设是一个群,
是
的子群,则:
1)子群的幺元
也是群
的幺元
;
2)对,a在S中的逆元
就是a在G中的逆元
。
※定理:设是一个群,S是G的一个非空子集,则
是
的子群的充要条件是:
推广:设
是一个群,H1,H2,...,Hn是G的n个子群,则有
是G的子群。
※模d同余的数的全体构成的集合称为一个同余类。
🐖:Zk表示整数集Z上的模k剩余类集合
Zk={[0],[1],[2],...,[k-1]}
①是群(剩余类加群)。[0]是
的幺元,每元[i]的
逆元是[k-i]。
②不是群,幺元为[1],[0]无逆元,所以仅仅是含幺半群。
!!不一定是群
※设n个元素的集合A上的全体置换构成集合Sn,证明构成群。(n次对称群)
15.3 交换群和循环群
※交换群
定义:若群中的运算
满足交换律,则称该群
是一个交换群(Abel)
定理:设是一个群,则
为交换群的充分必要条件是:
※循环群
定义:设是一个群,若G中存在元素a,使得
,则称
是(由a所生成的)循环群;而a称为G的一个生成元,记作
注:共k个元素乘积
证明任何一个循环群必是交换群
设
是一个循环群,a是生成元,则
,必有
使得
※元素的周期
设a是群G的生成元,对,有以下两种情况
1)存在整数i和j
2)
定义:设是一个群,对
,若有
(n是使得
成立的最小正整数)—>n为元素a的周期或阶数;若n不存在,周期为∞
定理: 设是一个群,对
,若a的周期为n,则:
①当且仅当 n|m
②当且仅当 n|(i-j)
③由a生成的子群恰有n个元素
证明:循环群的子群必是循环群
15.4 陪集与拉格朗日定理
※陪集
定义: 设是一个群,
是
的任一个子群,
①集合:称为由a确定的H在
中的一个右陪集;
代表元
②集合:称为由a确定的H在
的一个左陪集;
代表元
由左(右)陪集构成的集合的基数称为子群的指数
几点性质:
1.H关于同一元素的右,左陪集不一定相同。
2.凡是同属某个左(右)陪集的元素,它们对应的左(右)陪集相同
例:(1 3)H=(1 2 3)H={(1 3),(1 2 3)}
3.任何两个左(右)陪集要么相同,要么无公共元素
4.所有左(右)陪集的元素数目相同
定理:设H是群G的子群,,在G中建立二元关系:
,则R是G上的一个等价关系。
定理:设是群
的子群,则H的所有左(右)陪集都是等势的。
(等势:两个集合能建立双射)
同理:设是 群
的子群,则H的所有陪集的基数相等,且对于
※拉格朗日定理
定理:一个n阶有限群 群的任一个子群
的阶必是n的因子。即若|G|=n,|H|=m,则
是一个整数,且称k为G内H的指数,k=关于H的一切不同的左(右)陪集的个数。
15.5 正规子群与离群
※不变(正规)子群
定义:设是群
的一个子群,如果对
,都有aH=Ha,则称H是G的不变子群,——>H的一个左,右陪集叫做H的陪集。
定理:群的子群
是不变子群<=>对
即:
※商群
定义:设是
的一个正规子群,G/H表示G的所有陪集的集合,则
是一个群,——>商群。
15.6 群的同态与同构
证明两个代数系统是同构的方法
1.令f(x)为一个函数,说明f(x)是一个函数
2.f是一个双射
1)单射
2)满射
几点性质:
定理:设与
是两个代数系统,f:S—>T是满同态,则:
1)如果S是半群=>T是半群
2)如果S是群=>T是群
※同态核
定义:设f是群到
的同态映射,令
,e'是H的单位元——>k为f的同态核,
称为f的象集。