深度学习pytorch——多分类问题(持续更新)

回归问题 vs 分类问题(regression vs classification)

回归问题(regression)

1、回归问题的目标是使预测值等于真实值,即pred=y。

2、求解回归问题的方法是使预测值和真实值的误差最小,即minimize dist(pred,y),一般我们通过求其2-范数,再平方得到它的最小值,也可以直接使用1-范数。

分类问题(classification)

1、分类问题的目标是找到最大的概率,即maximize benchmark(accurcy)。

2、求解分类问题,第一种方法是找到真实值与预测值之间的最小距离,即minimize dist( p\theta(y | x), pr(y | x) )。第二种方法是找到真实值与预测值的最小差异,即minimize divergence( p\theta(y | x), pr(y | x) )

但是,为什么不直接就概率呢?

1、如果概率不发生改变,权重发生改变,就会导致梯度等于0,出现梯度离散的现象。

2、由于正确的数量是不连续的,因此造成梯度也是不连续的,会导致梯度爆炸、训练不稳定等问题。

二分类问题(Binary Classification)

给定一个函数 f :x ---> p(y = 1 | x),如果二分类的角度去研究这个问题。预测的方法是:如果p(y = 1 | x) > 0.5 ,则预测值为1,否则预测值为0。

以交叉熵的角度分析二分类问题:

首先将二分类问题实例化,是对于猫和狗的分类问题,根据概率之和等于1,我们可以得到狗的概率等于1减去猫的概率,即P(dog) = (1 - P(cat)),接着将其带入到交叉熵公式中,得到以下公式:

将具体问题扩展到 一般问题,得到如下公式:

分析以上公式,当y = 1 时,H (P, Q) = log(p);当y = 0 时,H (P, Q) = log(1 - p);这两种情况随着p的变化,单调性是相反的,进一步证明了交叉熵解决二分类问题的可行性。

多分类问题(Multi-class classification)

给定一个函数 f :x ---> p(y  | x) ,其中 [𝑝 𝑦 = 0 𝑥 , 𝑝 𝑦 = 1 𝑥 , … , 𝑝 𝑦 = 9 𝑥 。必须满足:所有的𝑝 (𝑦 |𝑥) ∈ [0, 1];所有的概率和\Sigma 𝑝 (𝑦 = 𝑖 |𝑥 )= 1。

如何让所有的概率和为1呢?

使用softmax函数,详情请看深度学习pytorch——激活函数&损失函数(持续更新)-CSDN博客

交叉熵(cross entropy)

1、交叉熵的特点:

(1)具有很高的不确定性

(2)度量很惊喜

2、交叉熵的公式:

3、交叉熵的值越高就代表不稳定性越大

(1)以代码的方式解释

可以清楚的观察到数据的分布越平衡,最后得到的熵值就越高,反之,熵值就越低。

import torch
a = torch.full([4],1/4)
print('1.a:',a)
print("entropy:",-(a*torch.log2(a)).sum())

a = torch.tensor([0.1,0.1,0.1,0.7])
print('2.a:',a)
print("entropy:",-(a*torch.log2(a)).sum())

a = torch.tensor([0.001,0.001,0.001,0.999])
print('3.a:',a)
print("entropy:",-(a*torch.log2(a)).sum())

(2)以理论的角度解释

给出Cross Entropy 的公式:

当Cross Entropy 和Entropy 这两个分布相等时,即H(p,q)=H(p),此时两个分布重合,此时Dkl就等于0。

当使用one-hot加密,我们可以得到Entropy = 1log1 = 0,即H(p)= 0,则此时满足H(p, q) = Dkl(p|q)的情况,此时如果对H(p,q)进行优化,相当于将Dkl(p|q)直接优化了,这是我们直接可以不断减小Dkl(p|q)的值,使预测值逐渐接近真实值,这就很好的解释了我们为什么要使用Cross Entropy。

为什么不使用MSE?

1、sigmoid + MSE 的模式会导致梯度离散的现象

2、收敛速度比较慢

通过下图可以很合理的证明以上两个原因的合理性:

3、但是有时我们再做一些前沿的技术时,会发现MSE效果要好于cross entropy,因为它的求解梯度较为简单。

 MSE VS Cross Entropy

Cross Entropy = sofymax + log + nll_loss,最后的结果都是一样的。

import torch
from torch.nn import functional as F
# MSE vs Cross Entropy
x = torch.randn(1,784)
w = torch.randn(10,784)
logists = x@w.t()
# 使用Cross Entropy
print(F.cross_entropy(logists,torch.tensor([3])))
# tensor(0.0194)
# 自己处理
pred = F.softmax(logists, dim = 1)
pred_log = torch.log(pred)
print(F.nll_loss(pred_log,torch.tensor([3])))
# tensor(0.0194)

多分类问题实战 

############# Logistic Regression 多分类实战(MNIST)###########
# (1)加载数据
# (2)定义网络
# (3)凯明初始化
# (4)training:实例化一个网络对象,构建优化器,迭代,定义loss,输出
# (5)testing


import  torch
import  torch.nn as nn
import  torch.nn.functional as F
import  torch.optim as optim
from    torchvision import datasets, transforms


batch_size=200 #Batch Size:一次训练所选取的样本数
learning_rate=0.01
epochs=10 #1个epoch表示过了1遍训练集中的所有样本,这里可以设置为 5

# 加载数据
train_loader = torch.utils.data.DataLoader(
    datasets.MNIST('../data', train=True, download=True,
                   transform=transforms.Compose([
                       transforms.ToTensor(),
                       transforms.Normalize((0.1307,), (0.3081,))
                   ])),
    batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(
    datasets.MNIST('../data', train=False, transform=transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize((0.1307,), (0.3081,))
    ])),
    batch_size=batch_size, shuffle=True)

# 在pytorch中的定义(a,b)a是ch-out输出,b是ch-in输入,也就是(输出,输入)
# 比如第一个可以理解为从784降维成200的层
w1, b1 = torch.randn(200, 784, requires_grad=True),\
         torch.zeros(200, requires_grad=True)
w2, b2 = torch.randn(200, 200, requires_grad=True),\
         torch.zeros(200, requires_grad=True)
w3, b3 = torch.randn(10, 200, requires_grad=True),\
         torch.zeros(10, requires_grad=True)

# 凯明初始化,如果不进行初始化会出现梯度离散的现象
# torch.nn.init.kaiming_normal_(tensor, a=0, mode='fan_in', nonlinearity='leaky_relu')
torch.nn.init.kaiming_normal_(w1)
torch.nn.init.kaiming_normal_(w2)
torch.nn.init.kaiming_normal_(w3)

# 前向传播过程
def forward(x):
    x = x@w1.t() + b1
    x = F.relu(x)
    x = x@w2.t() + b2
    x = F.relu(x)
    x = x@w3.t() + b3
    x = F.relu(x)  #这里千万不要用softmax,因为之后的crossEntropyLoss中自带了。这里可以用relu,也可以不用。
    return x  #返回的是一个logits(即没有经过sigmoid或者softmax的层)


# 优化器
optimizer = optim.SGD([w1, b1, w2, b2, w3, b3], lr=learning_rate)
criteon = nn.CrossEntropyLoss()

for epoch in range(epochs):

    for batch_idx, (data, target) in enumerate(train_loader):
        data = data.view(-1, 28*28) # 将二维的图片数据打平 [200,784],第5课用的 x = x.view(x.size(0), 28*28)

        logits = forward(data) #这里是网络的输出
        loss = criteon(logits, target)  # 调用cross—entorpy计算输出值和真实值之间的loss

        optimizer.zero_grad()
        loss.backward()
        # print(w1.grad.norm(), w2.grad.norm())
        optimizer.step()
        # 每 batch_idx * 100=20000输出结果 每100个bachsize打印输出的结果,看看loss的情况
        if batch_idx % 100 == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
                       100. * batch_idx / len(train_loader), loss.item()))

# len(data)---指的是一个batch_size;
# len(train_loader.dataset)----指的是train_loader这个数据集中总共有多少张图片(数据)
# len(train_loader)---- len(train_loader.dataset)/len(data)---就是这个train_loader要加载多少次batch

    # 测试网络---test----每训练完一个epoch检测一下测试结果
    # 因为每一个epoch已经优化了batch次参数,得到的参数信息还是OK的
    test_loss = 0
    correct = 0
    for data, target in test_loader:
        data = data.view(-1, 28 * 28)
        logits = forward(data) #logits的shape=[200,10],--200是batchsize,10是最后输出结果的10分类
        test_loss += criteon(logits, target).item()  #每次将test_loss进行累加   #target=[200,1]---每个类只有一个正确结果

        pred = logits.data.max(1)[1]
        # 这里losgits.data是一个二维数组;其dim=1;max()---返回的是每行的最大值和最大值对应的索引
        # max(1)----是指每行取最大值;max(1)[1]---取每行最大值对应的索引号
        # 也可以写成 pred=logits.argmax(dim=1)
        correct += pred.eq(target.data).sum()
        #预测值和目标值相等个数进行求和--在for中,将这个test_loader中相等的个数都求出来
    test_loss /= len(test_loader.dataset)
    print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
        test_loss, correct, len(test_loader.dataset),
        100. * correct / len(test_loader.dataset)))


"""
影响training的因素有:
1、learning rate过大
2、gradient vanish---梯度弥散(参数梯度为0,导致loss保持为常数,loss长时间得不到更新)
3、初始化问题----参数初始化问题
"""

课时50 多分类问题实战_哔哩哔哩_bilibili

  • 28
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
PyTorch是一个开源的机器学习库,它提供了丰富的工具和函数,用于构建和训练深度学习模型。深度学习分类是指使用神经网络对数据进行分类的任务,其中PyTorch可以帮助我们实现这一目标。 首先,我们可以使用PyTorch内置的数据集类来加载和准备我们的数据,例如ImageFolder类可以用来加载图像数据集,而对于其他类型的数据集,我们也可以自定义数据集类来进行加载。之后,我们可以使用PyTorch提供的网络模型,如ResNet、VGG等,或者自己创建神经网络模型来进行分类任务。 在模型构建完成后,我们可以使用PyTorch提供的优化器和损失函数来训练我们的模型。通过调用优化器的step方法,可以对模型的参数进行优化更新,而损失函数则可以帮助我们计算模型预测结果与真实标签之间的误差,从而指导模型的优化过程。 在训练过程中,我们还可以使用PyTorch提供的工具来对模型进行评估,如计算准确率、查准率和查全率等指标。另外,PyTorch还提供了可视化工具,如TensorBoard,可以帮助我们直观地观察模型的训练过程,并及时发现模型的问题。 综上所述,PyTorch提供了丰富的工具和函数,可以帮助我们方便地构建、训练和评估深度学习模型,从而完成对数据集的分类任务。通过使用PyTorch,我们可以更加高效地进行深度学习分类的工作。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值