基于深度学习的脑瘤检测与定位标记

摘要:

本研究提出了一种基于机器学习的脑瘤智能检测方法,通过图像预处理和使用ResNet-50模型结合随机森林分类器进行特征提取和定位,实现了84.78%的测试准确率。该方法能高效识别脑瘤区域并具有良好泛化能力,辅助医生快速准确诊断,对提高治疗效果和患者生存率具有重要意义。未来将优化算法,提高准确性,并扩展至其他医学影像分析。

关键字:机器学习;随机森林分类器;脑瘤检测;高光区域检测;医学影像

引言

本研究旨在开发一个基于机器学习的系统,用于自动识别和定位CT图像中的脑瘤。脑瘤的早期诊断和治疗对患者生存率至关重要,但面临图像质量差异、脑瘤形态多样性、噪声干扰、特征提取和分类定位等挑战。研究目标包括自动识别脑瘤区域、准确标记其位置以辅助手术或放疗,并通过持续学习优化系统性能。通过本研究,预期为脑瘤的早期诊断和治疗提供技术支持,改善患者预后。

网络结构

本研究利用预训练的ResNet50模型作为特征提取器,该模型通过残差学习解决了深度网络训练中的梯度消失问题,提高了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值