算法:快速幂ksm

为什么使用快速幂:

        假设题目要求求a的b次方。

        c/c++里并没有^运算符,所以我们第一时间可能想到使用for循环,将“a *= a”语句循环b次。但是这样时间复杂度为O(n),所以当b过大的时候,我们的程序将会非常慢,所以我们需要使用快速幂降低他的时间复杂度,时间复杂度为O(log2n)

快速幂写法:

#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define mod 998244353

ll ksm(ll a, ll b)
{
    //a = 2, b = 13
    //2^{1101} 13=8+4+1 2^8*2^4*2^1   原理:位运算
	ll res = 1;
	while(b)
	{
		if(b&1)res = res * a % mod;//b&1等价于b%2!=0(位运算,依次比较b与1的二进制位)
		a *= a%mod;//2^{2^n}
        b >>= 1;//b>>=1等价于b/=2(位运算,将b的二进制右移一位)
	}
	return res%mod;
}

int main()
{
	ll a, b;cin >> a >> b; 	
	cout << ksm(a, b);
	return 0;
}

 时间复杂度说明:

例:a = 2, b = 13

遍历了4次:2^2, 2^4, 2^8, 2^16。每次都以2的倍数增长,即{log2n},当指数=16时,执行了4次

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值