大佬动手做了个翻译Agent
人工智能领域领军人物、斯坦福大学教授吴恩达(Andrew Ng),近日发布了一个机器翻译智能体开源项目——translation-agent。该项目实现了一个基于反思工作流的大模型翻译应用。
目前,该项目已经获得了 3.6k Star,在研究团队有限的测试中,即有不错的表现。要知道,这还只是吴恩达利用几个周末捣鼓出来的项目,还处于早期原型阶段,如能深入研究,一定会有更加优异的表现。
translation-agent 项目的核心是一个反思性代理工作流,它利用大型语言模型(LLM)进行文本翻译,并通过自我反思来提出改进建议,进而优化翻译结果。
该项目基于 Python 开发,主要步骤如下:
1. 输入 prompt,使 LLM 将文本从 source_language 翻译成 target_language;
2. 让 LLM 反思翻译结果,并提出建设性改进建议;
3. 利用这些建议改进翻译。
机器翻译目前存在的问题是文字生硬、内容晦涩,也就是通常说的“机翻感”,其实上述过程的第一步产出的就是这类结果。
而基于反思工作流技术,则可以实现高度定制,轻松改变翻译的风格、处理特定术语和方言,以适应不同的翻译需求,使得结果看起来更接近母语的自然表达。
AI 技术爱好者可以轻松搭建 translation-agent 运行环境,首先安装 Poetry 包管理器和配置环境变量,然后通过简单的 Python 脚本调用translation-agent的 API 进行翻译。例如,用户可以指定源语言、目标语言、国家和待翻译的文本,然后获取翻译结果。
调用translation-agent接口示例
大佬提出Agent的四种设计模式
吴恩达教授认为 AI 最具前景的发展方向,就是基于大模型的 Agent 应用。当前大模型已经具备了足够智能的生成能力,但简单的“一问一答”形式并不能很好地解决复杂问题,而 Agent 能充分发掘大模型的潜力,实现多功能智能应用。
吴恩达总结和介绍了四种较为常见的设计模式,分别是反馈(Refection)模式、工具调用(ToolJse)模式、规划(Planning)模式和多智能体协作(Multi-agent colaboraion)模式。
反馈模式
这是让 AI 模型通过自我反思和迭代改进来提高任务执行能力的方法。模型不仅生成初始解决方案,还会通过多次反馈和修改,不断优化其输出。translation-agent 项目就是典型的反馈模式应用。
工具调用模式
这是让 AI 模型通过调用外部工具或库来增强任务执行能力的方法。模型并不仅仅依赖于自身的知识和能力,而是利用各种外部资源来完成任务,从而提高效率和准确性。
规划模式
这是通过提前计划和组织任务步骤来提高效率和准确性的方法。模型将复杂任务分解为多个步骤,并依次执行每个步骤,以达到预期的目标。
多智能体协作模式
这是通过多个智能体之间的合作来提高任务执行效率和准确性的方法。多个智能体分担任务,并通过相互交流和协作,共同完成复杂任务。
看明白了 Agent 设计模式,可怎么才能开发出有用的智能体应用呢?只要看懂一本书就可以,我们现在就来学会动手做 Agent。
一本书学会动手做Agent
《大模型应用开发:动手做AI Agent》是一本全面而深入探索 AI Agent 的指南。本书基于大模型技术,详细阐述了 AI Agent 的设计、开发和应用,涵盖了从基础理论到高级应用的各个方面。
书中首先介绍了 AI Agent 的基本概念,探讨了它们如何作为智能系统的关键组件来模拟人类的决策和交互过程。随后,作者深入讨论了大模型作为 Agent “大脑”的角色,以及如何利用这些模型的通用推理能力来构建高度智能的 AI 系统。
本书不仅阐述理论,还通过 7 个具体的实践案例展示了 AI Agent 在自动化办公、客户服务、个性化推荐、智能调度等多个领域的应用。读者将学习到如何使用 OpenAI API、LangChain、LlamaIndex 等工具来开发具有感知、规划和行动能力的 Agent。
为我们揭示 Agent 核心机密的作者是黄佳,笔名咖哥,现任新加坡科技研究局人工智能研究员,他在 NLP、大模型、AI in MedTech、AI in FinTech 等领域积累了丰富的项目经验。他还著有 《GPT图解:大模型是怎样构建的》《零基础学机器学习》《数据分析咖哥十话:从思维到实践促进运营增长》 等图书。
黄佳在书中总是以“咖哥”这个角色引出讨论,再以妙趣横生的方式讲解复杂的技术。这是因为他乐于保持好奇心、拥抱变化、持续学习,希望借助AI的“慧眼”和“注意力”来观察世界,并以轻松幽默的方式分享知识,收获本真的快乐。
随着 AI 技术的不断进步,AI Agent 正逐渐成为推动各行各业创新和转型的重要力量。本书适合对 Agent 技术感兴趣或致力于该领域的研究人员、开发人员、产品经理、企业负责人,以及高等院校相关专业师生阅读学习。
学会 《大模型应用开发:动手做AI Agent》,跟着大佬吴恩达一起开发智能体应用吧!
读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓
👉AI大模型学习路线汇总👈
大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉大模型实战案例👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
👉大模型视频和PDF合集👈
观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓