从监督到偏好:SFT与DPO微调方法详解

SFT和DPO是两种用于大规模语言模型(如GPT系列)微调的算法,它们在优化目标、数据处理和应用场景上有不同的特点。以下是对这两种算法的详细介绍

前排提示,文末有大模型AGI-CSDN独家资料包哦!

一、Supervised Fine-Tuning

《HOW ABILITIES IN LARGE LANGUAGE MODELS ARE AFFECTED BY SUPERVISED FINE-TUNING DATA COM- POSITION》

https://arxiv.org/pdf/2310.05492.pdf

SFT 是一种传统的监督学习微调方法,它通过使用带标签的数据集对预训练模型进行微调。该方法的核心目标是调整模型的参数,使其在特定任务或数据集上表现更好。

1、SFT 常见微调步骤

  • 数据准备:使用一个标注好的数据集,通常这些数据集包含输入-输出对,表示模型应该学习的映射关系。

  • 目标函数:模型通过最小化预测结果与真实标签之间的损失(通常是交叉熵损失)来进行训练。这个过程使得模型能够更好地执行特定的任务,如文本分类、问答、文本生成等。

  • 微调过程:在预训练的基础上,SFT 通过反向传播算法更新模型的参数,使得模型在特定任务上表现更佳。

2、优点
  • 简单直观:作为一种传统的微调方法,SFT易于理解和实现。

  • 高效性:对于特定任务,它通常能在短时间内获得较好的性能。

  • 可控性强:通过标注数据进行监督学习,可以直接控制模型的行为。

3、缺点
  • 依赖于标注数据:SFT需要大量的高质量标注数据,这对于某些领域可能比较困难或昂贵。

  • 过拟合风险:如果微调数据量过小,模型可能会在训练数据上过拟合,导致泛化性能下降。

二、Direct Preference Optimization

《Your Language Model is Secretly a Reward Model》

https://arxiv.org/pdf/2305.18290

DPO 是一种新兴的优化方法,通常用于优化基于人类反馈的模型,尤其是在强化学习和偏好学习的背景下。DPO 主要用于训练模型使其能更好地符合用户偏好或更复杂的目标,而不仅仅是通过传统的监督学习来拟合固定的标签。DPO 方法的核心思想是直接优化模型对比不同候选答案的偏好。通常,它采用“人类反馈”或者“模型间反馈”来评估哪些输出更符合目标或更具价值。

1、DPO 常见的步骤包括

  • 数据准备:在 DPO 中,通常会收集一组对话或生成的候选答案,并通过人类标注或自动化评估机制来确定这些答案的优劣。

  • 偏好对比:模型的训练目标是优化对不同候选答案的偏好预测,具体地,通过比较候选答案的质量来进行优化。比如,在对话生成任务中,模型需要通过反馈判断哪个回答更符合用户的需求。

  • 损失函数:DPO 常常采用基于排名或偏好的损失函数,来通过优化模型输出的偏好评分来提升性能。这种方法更关注不同候选之间的相对质量,而不是单一的预测准确性。

2、优点
  • 人类反馈驱动:DPO能够充分利用人类的偏好数据,生成更加符合人类意图和价值观的输出。

  • 高质量输出:通过优化模型对输出的偏好判断,DPO 可以帮助生成更加精准、相关的回答或内容。

  • 适应性强:DPO 对模型的输出进行细粒度的优化,使其可以更好地适应复杂的应用场景,如对话系统、个性化推荐等。

3、缺点
  • 依赖偏好数据:DPO 需要大量的人类反馈或相似的偏好数据进行训练,这种数据的收集成本较高。

  • 训练难度大:与传统的监督学习相比,DPO 的训练过程较为复杂,需要处理更多样化的数据和多层次的优化目标。

三、总结:

  • SFT 是一种标准的监督微调方法,主要通过标注数据来微调预训练模型,适用于任务明确且有丰富标注数据的场景。

  • DPO 则侧重于根据用户的偏好或反馈来优化模型的输出,适用于需要根据不同情境、个性化需求进行调整的任务,如对话生成、内容推荐等。

这两种方法各有优势,具体选择哪种方法取决于任务的特性和可用的数据。

读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉大模型视频和PDF合集👈

观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值