大模型这两年被宣传的沸沸扬扬,好像它真的无所不能,似乎很快就要取代很多人的工作,但事实真的如此吗?非也。
前排提示,文末有大模型AGI-CSDN独家资料包哦!
尽管它让人们看到了通用人工智能的可能性,它可以写作、写诗、作曲、编程、画画、生成视频、写邮件等,但它并不是没有任何缺点的。
目前来说,它有三个非常大的局限性,导致它在应用过程中,并没有人们理想中那么好的效果。
这三个局限性是:知识的局限性;幻觉问题;数据安全问题。
01 局限一:知识的局限性
知识的局限性,是指大模型所具备的知识,完全停留在了它训练完成的那一刻。也就是说,训练数据中所包含的知识,就是大模型的所有知识。比如ChatGPT3.5的知识停留在2021年9月,ChatGPT4的知识停留在2023年4月。
如果你问它这个日期之后的知识,在不联网的情况下,它是不可能知道的。这是从时间的维度去讲,它不具备时时更新的数据。
如果从领域的维度去讲,它只具备通用领域的知识,也就是那些可以公开在网上搜索到的知识,尽管它包含海量的数据,但是它不太可能知道你个人的隐私数据,更不会知道某个公司内部的业务数据。
这种领域局限性,限制了大模型在企业中的进一步落地使用。
因为每个企业关心的问题是,大模型能否真正的帮助企业降本增效,而如果大模型连基本的业务问题都无法准确回答,那前面的目标其实很难实现。
02 局限二:幻觉问题
幻觉问题,是大模型老生常谈的一个问题了,几乎从它诞生的那一刻起,这个问题就经常被拿来讨论。
什么是大模型的幻觉问题呢?指它有时候会胡编乱造出一些看上去合理其实根本不符合事实的内容。
比如说,你想用大模型来帮助你查询某个主题的文献内容,然后大模型给出了很多参考文献,你真正去谷歌学术上面搜的时候,会发现很多文献全是假的,根本就没有。
还比如说,有时候大模型会一本正经地胡说八道,尤其在解数学题的时候,明明结果不正确,它非要说自己是正确的。
那么幻觉问题是怎么产生的呢?它和大模型的训练机制有关,现在大模型背后都是采用Transformer架构。
它在本质上是根据概率来预测下一个token,或者说,根据前面文本内容来预测下一个字。
比如说,当大模型发现前面的文本是:“今天我很…”,那么它会从海量的数据里面,寻找和“我很”向量距离比较近的词语,它可能会找到“开心”、“难过”、“饿”等等一系列的词语。
然后从中选择一个可能出现概率最高的词汇,比如说:“开心”。那么大模型就会完成续写:今天我很开心。
本质上来说,大模型并不理解它所说的话,尽管它能写诗,能写作,能干很多事。但其实,它做的只是一个数学上的统计概率的问题,解出最优答案,然后迅速续写前面的文本。
这样一个底层机制,也导致了大模型的幻觉问题,因为它总能找出下一个文本是什么,而从不关心这样衔接是否正确,这就大模型出现幻觉的根本原因。
03 局限三:数据安全问题
据说,有人利用各种Prompt小技巧,从ChatGPT那里套出很多隐私信息,后来在OpenAI公司安全部门的严加管制之下,这种情况才逐渐变少。
大模型的诞生,基于海量的训练数据,而这些数据里面大多数都是公开可查的,但有时也会涉及数据安全和版权问题。
像OpenAI就被多家公司或者机构投诉,侵犯了它们的数据版权,擅自使用它们的数据进行大模型训练。
由于现在这方面的法律法规还不是很完善,所以这种情况也很难有清晰的界定,去区分哪些是属于版权的数据信息。
从使用者的角度来说,当企业想要使用大模型给公司降本增效时,同样面临的数据安全问题。
一方面希望利用大模型的能力,帮助企业业务实现提效,另一方面又不希望公司的隐私和安全数据,暴露在大模型里面。
因此,就需要在大模型的基础之上,搭配其它的技术,来实现不同企业各自的个性化目标。
尾声:
综上所述,大模型并不是很多人想象中的那种无所不能,现阶段的AI和大模型,它仍有很大的局限性,最大的三个是:知识的局限性;幻觉问题;数据安全问题。
任何技术在发展的前期,都会遇到各种各样的问题,尽管而这些问题会影响其在某些应用场景下的使用,但随着时间的发展,这些问题都会有与之相应的解决方案出现。
比如说,目前非常流行的RAG技术,就可以在某种程度上,降低大模型上面三个局限性所带来的影响。
读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓
👉AI大模型学习路线汇总👈
大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉大模型实战案例👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
👉大模型视频和PDF合集👈
观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓