【无标题】

RAG(Retrieval-Augmented Generation) 是一种结合了检索(Retrieval)生成(Generation) 的混合模型技术,旨在通过引入外部知识库来增强生成模型的能力。其核心思想是:在生成答案之前,先从大规模知识库中检索相关文档或信息,再结合这些检索到的内容生成更准确、更可靠的回答。

请添加图片描述

一、RAG的核心原理

  1. 检索阶段(Retrieval)
  • 当输入一个问题或请求时,模型会先利用检索系统(如基于向量相似度的搜索、传统搜索引擎或数据库查询)从外部知识库(如维基百科、专业文档、私有数据库)中检索与问题最相关的文档片段或信息。
  • 检索通常基于语义相似度(例如,将问题和文档编码为向量,通过向量空间中的距离排序)。
  1. 生成阶段(Generation)
  • 将检索到的相关文档片段与原始输入问题拼接,输入到生成模型(如GPT、T5等)中。
  • 生成模型基于检索到的上下文和原始问题,综合生成最终答案。

关键流程
问题 → 检索相关文档 → 结合文档生成答案

二、RAG的优势

  1. 减少模型幻觉(Hallucination)
  • 传统生成模型(如GPT)可能因缺乏实时或领域知识而“编造”答案(即幻觉)。RAG通过引入外部知识,约束生成内容与真实数据的一致性。
  1. 动态更新知识
  • 生成模型本身的知识是静态的(取决于训练数据的时间)。RAG通过检索外部知识库,可以实时更新知识,无需重新训练模型。
  1. 可解释性增强
  • 生成的答案可以关联到检索到的具体文档片段,便于验证来源和可信度(例如,标注引用来源)。
  1. 处理长尾问题
  • 对于冷门、专业或需要具体数据的问题(如最新研究、企业私有数据),RAG能通过检索补充生成模型的知识盲区。
  1. 灵活性高
  • 检索模块和生成模块可独立优化(如替换更高效的检索系统或更强大的生成模型)。
  1. 降低训练成本
  • 无需将全部知识编码到生成模型的参数中,节省训练资源,尤其适合需要频繁更新知识的场景。

三、典型应用场景

  • 开放域问答:回答需要事实性知识的问题(如“量子计算的最新进展”)。
  • 客服系统:结合企业知识库生成精准回复。
  • 学术研究:基于论文库生成文献综述或解释专业术语。
  • 事实核查:验证生成内容的准确性。

四、RAG vs 传统生成模型

对比维度传统生成模型(如GPT)RAG
知识来源训练数据中的静态知识外部动态知识库
可解释性低(黑盒生成)高(可溯源检索结果)
更新知识成本需重新训练或微调更新知识库即可
抗幻觉能力

五、RAG的挑战

  • 检索质量依赖:若检索系统返回无关文档,可能导致生成错误答案。
  • 延迟问题:检索和生成两阶段的串联可能增加响应时间。
  • 知识库覆盖度:若知识库不完整,会影响效果。

六、总结

RAG通过结合检索与生成,显著提升了生成模型在准确性可解释性知识更新效率上的表现,特别适合需要依赖外部知识或实时数据的场景。随着大模型技术的发展,RAG已成为解决模型幻觉和知识局限性的重要方案之一。

那么,如何系统的去学习大模型LLM?

作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。

所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。

由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
在这里插入图片描述

👉大模型学习指南+路线汇总👈

我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
在这里插入图片描述
在这里插入图片描述

👉①.基础篇👈

基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
在这里插入图片描述

👉②.进阶篇👈

接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
在这里插入图片描述

👉③.实战篇👈

实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
在这里插入图片描述

👉④.福利篇👈

最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
在这里插入图片描述
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值