生成式对抗网络(GANs)的基本原理与实现
作者:禅与计算机程序设计艺术
1. 背景介绍
生成式对抗网络(Generative Adversarial Networks,简称GANs)是近年来机器学习和深度学习领域最重要的创新之一。它由 Yann LeCun、Ian Goodfellow 等人在2014年提出,在图像生成、文本生成、语音合成等多个领域取得了突破性进展,被认为是继卷积神经网络(CNN)和循环神经网络(RNN)之后最重要的深度学习架构。
GANs 的核心思想是通过构建一个"对抗"的训练过程,让两个神经网络(生成器和判别器)相互竞争、相互学习,最终达到生成器能够生成高质量、逼真的样本,判别器难以区分真假的目标。这种对抗训练过程使得生成器能够学习到数据的潜在分布,从而生成出与真实数据难以区分的样本。
2. 核心概念与联系
GANs 的核心组件包括:
生成器(Generator): 负责生成与真实样本难以区分的人工样本。它接受一个随机噪声输入,通过学习数据分布,生成逼真的样本。
判别器(Discriminator): 负责判断输入样本是真实样本还是生成器生成的人工样本。它接受一个样本输入,输出一个概率值,表示该样本为真实样本的概率。
对抗训练(Adversarial Training): 生成器和判别器