1. 背景介绍
强化学习 (Reinforcement Learning, RL) 作为机器学习的一大分支,近年来取得了巨大的进步。然而,由于其学习过程的复杂性以及决策过程的“黑盒”特性,理解和解释强化学习模型的行为一直是一个挑战。为了解决这个问题,强化学习可视化技术应运而生,它可以将复杂的学习过程和决策策略以直观的方式展现出来,帮助研究人员和开发者更好地理解、调试和改进强化学习模型。
2. 核心概念与联系
2.1 强化学习
强化学习是一种通过与环境交互学习的机器学习方法。它包含以下几个核心概念:
- Agent (智能体):执行动作并与环境交互的实体。
- Environment (环境):Agent 所处的外部世界,提供状态信息和奖励信号。
- State (状态):描述环境当前状况的信息集合。
- Action (动作):Agent 在特定状态下可以执行的操作。
- Reward (奖励):Agent 执行动作后从环境获得的反馈信号,用于评估动作的好坏。
- Policy (策略):Agent 根据当前状态选择动作的规则或