微分几何入门与广义相对论:引力能量的非定域性
1.背景介绍
在经典牛顿力学中,引力被描述为两个物体之间的相互作用力。然而,在爱因斯坦广义相对论的框架下,引力不再是一种力,而是时空本身的曲率。这种观点带来了一个有趣的问题:如何定义引力场的能量?在经典理论中,能量可以通过力和位移的乘积来定义。但在广义相对论中,由于没有力的概念,我们需要重新思考引力能量的定义。
微分几何为我们研究这个问题提供了强有力的数学工具。通过研究流形上的曲率张量,我们可以描述时空的曲率,并试图从中推导出引力场的能量。然而,正如我们将看到的,这个问题并不简单,因为引力能量似乎具有非局域性质。
1.1 广义相对论与时空曲率
广义相对论的核心思想是,物质的存在会导致时空产生曲率。这种曲率反过来又决定了物质在时空中的运动轨迹。爱因斯坦场方程描述了物质分布和时空曲率之间的关系:
$$ R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = \frac{8\pi G}{c^4}T_{\mu\nu} $$
其中$R_{\mu\nu}$是黎曼张量,描述时空的曲率;$T_{\mu\nu}$是能量动量张量,描述物质的分布;$G$是牛顿常数;$c$是光速。
1.2 能量在广义相对论中的困难
在经典理论中,能量可以通过力和位移的乘积来定义。但在广义相对论中,由于没有力的概念,我们需要重新思考能量的定义。一种可能的方法是尝试从时空的曲率中推导出能量密度。然而