大语言模型原理基础与前沿 轻量级适配

大语言模型原理基础与前沿 轻量级适配

关键词:大语言模型,轻量级适配,迁移学习,微调,模型压缩,量化,剪枝,知识蒸馏

1. 背景介绍

1.1 问题的由来

近年来,随着深度学习技术的飞速发展,大语言模型(LLMs)在自然语言处理(NLP)领域取得了显著的突破。这些模型在处理复杂任务时展现出强大的能力,如机器翻译、文本摘要、问答系统等。然而,大语言模型通常具有数以亿计的参数,导致其推理速度慢、内存占用大,难以在移动端、边缘设备等资源受限的环境下部署。因此,如何对大语言模型进行轻量级适配,成为了一个重要的研究方向。

1.2 研究现状

针对大语言模型的轻量级适配,研究人员提出了多种方法,主要包括:

  • 模型压缩:通过剪枝、量化、知识蒸馏等技术,降低模型参数数量和计算复杂度,从而实现模型的轻量化。
  • 模型蒸馏:将大模型的丰富知识迁移到轻量级模型中,使其在保持性能的同时降低计算复杂度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值