大语言模型原理基础与前沿 轻量级适配
关键词:大语言模型,轻量级适配,迁移学习,微调,模型压缩,量化,剪枝,知识蒸馏
1. 背景介绍
1.1 问题的由来
近年来,随着深度学习技术的飞速发展,大语言模型(LLMs)在自然语言处理(NLP)领域取得了显著的突破。这些模型在处理复杂任务时展现出强大的能力,如机器翻译、文本摘要、问答系统等。然而,大语言模型通常具有数以亿计的参数,导致其推理速度慢、内存占用大,难以在移动端、边缘设备等资源受限的环境下部署。因此,如何对大语言模型进行轻量级适配,成为了一个重要的研究方向。
1.2 研究现状
针对大语言模型的轻量级适配,研究人员提出了多种方法,主要包括:
- 模型压缩:通过剪枝、量化、知识蒸馏等技术,降低模型参数数量和计算复杂度,从而实现模型的轻量化。
- 模型蒸馏:将大模型的丰富知识迁移到轻量级模型中,使其在保持性能的同时降低计算复杂度。