半监督学习 (SemiSupervised Learning) 原理与代码实例讲解

半监督学习 (Semi-Supervised Learning) 原理与代码实例讲解

作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming

1. 背景介绍

1.1 问题的由来

在机器学习中,数据通常是有限的,尤其是在标注数据方面。标注数据通常需要人力进行标注,而标注过程既耗时又昂贵。因此,如何有效地利用有限的标注数据来提高模型性能,成为了一个重要的研究方向。半监督学习(Semi-Supervised Learning)正是在这种背景下应运而生。

1.2 研究现状

半监督学习在图像识别、自然语言处理、语音识别等众多领域都取得了显著的成果。目前,半监督学习的研究主要集中在以下两个方面:

  • 利用未标注数据进行模型预训练,以提高模型对未标注数据的泛化能力。
  • 在预训练模型的基础上,结合少量标注数据对模型进行微调,进一步优化模型性能。

1.3 研究意义

半监督学习具有以下重要意义:

  • 提高模型性能:通过利用未标注数据,半监督学习可以显著提高模型的泛化能力,从而在有限的标注数据
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值