半监督学习 (Semi-Supervised Learning) 原理与代码实例讲解
作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming
1. 背景介绍
1.1 问题的由来
在机器学习中,数据通常是有限的,尤其是在标注数据方面。标注数据通常需要人力进行标注,而标注过程既耗时又昂贵。因此,如何有效地利用有限的标注数据来提高模型性能,成为了一个重要的研究方向。半监督学习(Semi-Supervised Learning)正是在这种背景下应运而生。
1.2 研究现状
半监督学习在图像识别、自然语言处理、语音识别等众多领域都取得了显著的成果。目前,半监督学习的研究主要集中在以下两个方面:
- 利用未标注数据进行模型预训练,以提高模型对未标注数据的泛化能力。
- 在预训练模型的基础上,结合少量标注数据对模型进行微调,进一步优化模型性能。
1.3 研究意义
半监督学习具有以下重要意义:
- 提高模型性能:通过利用未标注数据,半监督学习可以显著提高模型的泛化能力,从而在有限的标注数据