Few-ShotLearning在知识图谱构建与问答领域的研究与实践
作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming
关键词:
Few-ShotLearning,知识图谱,问答系统,迁移学习,元学习,强化学习
1. 背景介绍
1.1 问题的由来
知识图谱作为一种语义网络,能够将现实世界中实体、属性和关系以结构化的形式表示出来,广泛应用于问答系统、推荐系统、搜索引擎等领域。然而,传统的知识图谱构建方法往往依赖于大规模标注数据,这在实际应用中存在数据获取困难、成本高昂等问题。为了解决这个问题,Few-ShotLearning(简称FSL)应运而生,它通过少量样本学习,在知识图谱构建与问答领域展现出巨大的潜力。
1.2 研究现状
近年来,FSL在知识图谱构建与问答领域取得了显著进展。主要研究方向包括:
- 基于迁移学习的知识图谱构建:利用已有知识图谱作为预训练模型,通过少量样本学习新的实体、属性和关系。
- 基于元学习的知识图谱构建:设计新的学习算法&#