FewShotLearning在知识图谱构建与问答领域的研究与实践

Few-ShotLearning在知识图谱构建与问答领域的研究与实践

作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming

关键词:

Few-ShotLearning,知识图谱,问答系统,迁移学习,元学习,强化学习

1. 背景介绍

1.1 问题的由来

知识图谱作为一种语义网络,能够将现实世界中实体、属性和关系以结构化的形式表示出来,广泛应用于问答系统、推荐系统、搜索引擎等领域。然而,传统的知识图谱构建方法往往依赖于大规模标注数据,这在实际应用中存在数据获取困难、成本高昂等问题。为了解决这个问题,Few-ShotLearning(简称FSL)应运而生,它通过少量样本学习,在知识图谱构建与问答领域展现出巨大的潜力。

1.2 研究现状

近年来,FSL在知识图谱构建与问答领域取得了显著进展。主要研究方向包括:

  • 基于迁移学习的知识图谱构建:利用已有知识图谱作为预训练模型,通过少量样本学习新的实体、属性和关系。
  • 基于元学习的知识图谱构建:设计新的学习算法&#
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值