一切皆是映射:元学习中的神经架构搜索(NAS)
关键词:神经架构搜索(NAS), 元学习, 自动化设计, 深度学习, 计算机视觉, 优化算法
1. 背景介绍
1.1 问题的由来
随着深度学习的蓬勃发展,深度神经网络在各个领域都取得了显著的成果。然而,深度神经网络的架构设计仍然高度依赖人工经验,耗时耗力。如何实现深度神经网络架构的自动化设计,成为了深度学习领域的一个关键问题。
神经架构搜索(Neural Architecture Search, NAS)作为一种自动化的神经网络架构设计方法,旨在通过搜索过程找到最优或近似最优的神经网络架构。NAS的研究起步于2016年左右,经过近几年的快速发展,已经成为了深度学习领域的一个热点研究方向。
1.2 研究现状
近年来,随着深度学习技术的快速发展,神经架构搜索(NAS)领域也取得了丰硕的成果。以下是一些重要的研究进展:
- 搜索算法:提出了多种搜索算法,如强化学习、进化算法、贝叶斯优化等,用于搜索最优神经网络架构。
- 搜索空间&#x