CINTA第四次作业

7.设G是群,对任意n ∈ \in N,i ∈ \in [0,n], g i g_i gi ∈ \in G.证明 g 0 g_0 g0 g 1 g_1 g1 g n g_n gn的逆元是 g n − 1 {g_n}^{-1} gn1 g 1 − 1 {g_1}^{-1} g11 g 0 − 1 {g_0}^{-1} g01

证明:由群公理得,在群G中,有单位元e。对任意的n ∈ \in N,i ∈ \in [0,n], g i g_i gi ∈ \in G.都有唯一逆元 g i − 1 {g_i}^{-1} gi1能使得 g i g_i gi· g i − 1 {g_i}^{-1} gi1 =e。
(1).( g 0 g_0 g0 g 1 g_1 g1··· g n g_n gn)·( g n − 1 {g_n}^{-1} gn1··· g 1 − 1 {g_1}^{-1} g11 g 0 − 1 {g_0}^{-1} g01) = g 0 {g_0} g0 g 1 {g_1} g1··· g n − 1 g_{n-1} gn1 ·e· g n − 1 − 1 {g_{n-1}}^{-1} gn11··· g 1 − 1 {g_1}^{-1} g11 g 0 − 1 {g_0}^{-1} g01=
g 0 g_0 g0 g 1 g_1 g1··· g n − 1 g_{n-1} gn1 · g n − 1 − 1 {g_{n-1}}^{-1} gn11··· g 1 − 1 {g_1}^{-1} g11 g 0 − 1 {g_0}^{-1} g01=…= g 0 g_0 g0·e· g 0 − 1 {g_0}^{-1} g01=e。
(2).( g n − 1 {g_n}^{-1} gn1··· g 1 − 1 {g_1}^{-1} g11 g 0 − 1 {g_0}^{-1} g01) ·( g 0 g_0 g0 g 1 g_1 g1··· g n g_n gn)= g n − 1 {g_n}^{-1} gn1··· g 1 − 1 {g_1}^{-1} g11·e· g 1 g_1 g1··· g n g_n gn= g n − 1 {g_n}^{-1} gn1··· g 1 − 1 {g_1}^{-1} g11· g 1 g_1 g1··· g n g_n gn=···= g n − 1 {g_n}^{-1} gn1·e· g n g_n gn=e。
所以 g 0 g_0 g0 g 1 g_1 g1 g n g_n gn的逆元是 g n − 1 {g_n}^{-1} gn1 g 1 − 1 {g_1}^{-1} g11 g 0 − 1 {g_0}^{-1} g01

8.证明:任意群G的两个子群的交集也是群G的子群。
设群A和群B是群G的两个子群,集合C为群A和群B的交集。
(1).群A和群B是群G的两个子群,考虑到单位元的唯一性,所以e ∈ \in A且e ∈ \in B,所以e ∈ \in C,C是群G的非空子集。
(2).取任意的a ∈ \in C,因为C是A和B的交集,所以有a ∈ \in A,且a ∈ \in B,又因为群A和群B是群G的子群,所以有 a − 1 a^{-1} a1 ∈ \in A,使得a· a − 1 a^{-1} a1= a − 1 a^{-1} a1·a=e,且 a − 1 a^{-1} a1 ∈ \in B,a· a − 1 a^{-1} a1= a − 1 a^{-1} a1·a=e,又因为C是群A和群B的交集,所以有 a − 1 a^{-1} a1 ∈ \in C,使得a· a − 1 a^{-1} a1= a − 1 a^{-1} a1·a=e。
(3).若a,b ∈ \in C,因为C是群A和群B的交集,所以有a,b ∈ \in A,且a,b ∈ \in B,因为群A是群G的子集,满足封闭性,所以a·b ∈ \in A,同理得a·b ∈ \in B,所以有a·b ∈ \in C
所以,任意群G的两个子群的交集也是群G的子群。

9.证明或证伪:任意群G的两个子群的并集也是群G的子集。
证伪:
(1).设群G的两个子群为群A和群B,集合C是群A和群B的并集。
单位元e ∈ \in A且e ∈ \in B,所以有e ∈ \in C,所以群C是群G的非空子集。
(2).若a ∈ \in A且b ∈ \in B,a ≢ \not\equiv b,因为群A和群B是群G的子群,所以 a − 1 a^{-1} a1 ∈ \in A且 b − 1 b^{-1} b1 ∈ \in B,所以a,b, a − 1 a^{-1} a1 b − 1 b^{-1} b1 ∈ \in C,可能有C={a,b, a − 1 a^{-1} a1, b − 1 b^{-1} b1,e},所以a·b ∉ \notin /C,所以集合C不一定满足封闭性。
综上,任意群G的两个子群的并集不一定是群G的子群。

10.G是阿贝尔群,H和K是G的子群。请证明HK={hk:h ∈ \in H,k ∈ \in K}是群G的子群。如果G不是阿贝尔群,结论是否依然成立?
证明:
(1).因为H和K是G的子群,所以e ∈ \in H且e ∈ \in K,所以e ∈ \in HK.所以HK是非空子集。
(2).所以对于任意的 h 1 h_1 h1, h 2 h_2 h2 ∈ \in H,都有 h 1 h_1 h1· h 2 h_2 h2= h 2 h_2 h2· h 1 h_1 h1 k 1 k_1 k1, k 2 k_2 k2 ∈ \in K, k 1 k_1 k1· k 2 k_2 k2= k 2 k_2 k2· k 1 k_1 k1,由HK的定义得 h 1 h_1 h1· k 1 k_1 k1 ∈ \in HK, h 2 h_2 h2 k 2 k_2 k2 ∈ \in HK,因为 h 1 h_1 h1, h 2 h_2 h2 ∈ \in H,H是群G的子集,满足封闭性,所以有 h 1 h_1 h1· h 2 h_2 h2= h 2 h_2 h2· h 1 h_1 h1 ∈ \in H,同理得 k 1 k_1 k1· k 2 k_2 k2= k 2 k_2 k2· k 1 k_1 k1 ∈ \in K,所以 h 1 h_1 h1 k 1 k_1 k1 h 2 h_2 h2 k 2 k_2 k2 ∈ \in HK,满足封闭性。
(3).若 h 1 h_1 h1 ∈ \in H, k 1 k_1 k1 ∈ \in K,则 h 1 h_1 h1· k 1 k_1 k1 ∈ \in HK,因为H和K是群G的子群,所以有 h 1 − 1 h_1^{-1} h11 ∈ \in H, k 1 − 1 k_1^{-1} k11 ∈ \in K, h 1 − 1 h_1^{-1} h11· k 1 − 1 k_1^{-1} k11 ∈ \in HK ,又因为G是阿贝尔群,所以 k 1 − 1 k_1^{-1} k11· h 1 − 1 h_1^{-1} h11 ∈ \in HK,( h 1 h_1 h1· k 1 k_1 k1)·( k 1 − 1 k_1^{-1} k11· h 1 − 1 h_1^{-1} h11)=( k 1 − 1 k_1^{-1} k11· h 1 − 1 h_1^{-1} h11)·( h 1 h_1 h1· k 1 k_1 k1)=e。
所以,HK是群G的子群。
(4).如果群G不是阿贝尔群时,结论不成立。
h 1 h_1 h1 ∈ \in H, k 1 k_1 k1 ∈ \in K, h 1 h_1 h1· k 1 k_1 k1 ∈ \in HK,因为H和K是群G的子群,所以有 h 1 − 1 h_1^{-1} h11 ∈ \in H, k 1 − 1 k_1^{-1} k11 ∈ \in K
h 1 h_1 h1· k 1 k_1 k1)·( k − 1 k^{-1} k1· h − 1 h^{-1} h1)=( k − 1 k^{-1} k1· h − 1 h^{-1} h1)·( h 1 h_1 h1· k 1 k_1 k1)=e,所以 k − 1 k^{-1} k1· h − 1 h^{-1} h1 h 1 h_1 h1· k 1 k_1 k1的逆元。
因为HK={hk:h ∈ \in H,k ∈ \in K},且此时群G不是阿贝尔群,所以 k − 1 k^{-1} k1· h − 1 h^{-1} h1 ∉ \notin /HK,所以HK中没有 h 1 h_1 h1· k 1 k_1 k1的逆元,所以HK不是群G的子群,结论不成立。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值