1.所谓连通分量,指的是无向图中的极大连通子图(再添加任何一个顶点,这个图就不连通了)。
2.不是强连通图,但是可以有强连通分量。
3.一个连通图的生成树(只在无向图里讨论生成树)是一个极小连通子图,它含有图中全部顶点,但只有足以构成一棵树的n-1条边。如果在一棵生成树上添加一条边,必定构成一个环,因为这条边使得它依附的那两个顶点之间有了第二条路径。
4.一棵有n个顶点的生成树有且仅有n-1条边。如果一个图有n个顶点和小于n-1条边,则是非连通图。(其实意思就是说极大连通子图你加任意一个顶点,这个图就不连通。极小连通子图就是有全部n个顶点n-1条边的生成树,你加任意一条边就会形成回环)
5.有n-1条边的图不一定是生成树。(4个顶点,三个顶点三条边成一个回环,不连通)
-
图的邻接矩阵是一个二位数组A.arcs[n] [n]
-
图的遍历分为深度优先遍历和广度优先遍历。
-
深度优先遍历要利用到栈,走不下去了就回退。
-
广度优先遍历要利用到队列,依次入队,出队前看它周围有没有没有访问过的,如果有就直接让他入队,注意出队的顺序。