Ultralytics 是一家致力于提供领先的计算机视觉解决方案的公司,尤其以其开发的 YOLO(You Only Look Once)系列目标检测模型 而闻名。YOLO 系列模型是世界上最广泛使用的深度学习目标检测框架之一,适用于从实时对象检测到视频分析等多种场景。
github:GitHub - ultralytics/ultralytics: NEW - YOLOv8 🚀 in PyTorch > ONNX > OpenVINO > CoreML > TFLite
公司概述
Ultralytics由 Glenn Jocher 创立,最初是为了简化目标检测模型的开发和应用,专注于构建高效、易用、性能卓越的深度学习框架。其主要产品之一是 YOLO 系列模型,尤其是最新的 YOLOv5 和 YOLOv8,因其在精度、速度和可扩展性方面的出色表现而广受欢迎。
核心产品:YOLO 系列
-
YOLOv5:
- YOLOv5 是一个轻量级且高效的目标检测模型,设计得简单易用。它集成了 PyTorch 框架,方便用户在多个硬件平台上使用,并且支持训练自定义数据集。
- YOLOv5 通过不断优化模型结构,提供了多种模型版本(如
s
,m
,l
,x
),满足不同场景下的性能要求。
-
YOLOv8:
- YOLOv8 是 Ultralytics 开发的最新版本,进一步提升了性能、速度和用户体验。它简化了API接口,并提供了更为现代化的设计,使得用户可以快速上手并进行模型训练、推理等操作。
Ultralytics 的目标
Ultralytics 的目标是提供强大的计算机视觉工具,让更多开发者能够轻松应用深度学习技术解决现实世界中的问题。除了开源 YOLOv5 和 YOLOv8,Ultralytics 还通过其平台提供托管服务和企业解决方案,帮助组织快速部署计算机视觉应用。
Ultralytics 的优势:
- 高效模型:YOLO 模型能够在保证精度的情况下实现极快的推理速度,适用于嵌入式设备、无人机、自动驾驶等实时要求较高的场景。
- 开源:YOLOv5 和 YOLOv8 均为开源项目,开发者可以自由使用、修改和部署这些模型,并根据自己的需求微调模型。
- 易用性:通过封装好的类和函数,用户只需少量代码即可完成目标检测任务,降低了机器学习开发的门槛。
Ultralytics 平台
除了开源项目,Ultralytics 还提供了基于云的计算机视觉解决方案平台,方便企业用户在大规模场景下部署YOLO模型。这些服务涵盖了从模型托管、API调用到企业级计算机视觉服务的各个方面。
代码下载
git clone https://github.com/ultralytics/ultralytics.git
这就是完整的项目代码包了
1. .github 文件夹
- 这个文件夹通常包含GitHub相关的配置文件,比如CI/CD工作流程(如GitHub Actions),还有贡献者指南、Pull Request模板等。
2. docker 文件夹
- 该文件夹通常包含Docker相关的文件,用于容器化运行环境。Docker可以确保在不同系统上提供一致的运行环境,通常包括
Dockerfile
和其他配置文件,用于构建运行Ultralytics YOLO的容器。
3. docs 文件夹
- 这里存放的是项目的文档文件,可能包括如何安装、使用、API参考文档等。用户可以根据这些文档了解如何使用Ultralytics库进行训练和推理。
4. examples 文件夹
- 这个文件夹通常会包含一些示例代码或脚本,帮助用户快速上手YOLO的功能,比如目标检测、训练模型等。通过这些示例代码,您可以快速理解如何使用YOLO库进行不同任务。
5. tests 文件夹
- 这里包含的是单元测试代码,用于验证项目的功能是否正常工作。通过这些测试,开发者可以确保代码在各种情况下的正确性。
6. ultralytics 文件夹
- 这是项目的核心文件夹,包含了YOLO模型的主要代码。
ultralytics
目录下通常有模型定义、训练脚本、推理代码和数据处理等核心逻辑。这个文件夹中的代码封装了YOLOv8的主要功能。
7. .gitignore
- 该文件列出了Git在提交代码时需要忽略的文件或文件夹。通常包括生成的二进制文件、日志文件、虚拟环境文件夹等。
8. CITATION.cff
- 这是一个引用文件,说明如何引用该项目。科研人员或开发者在使用该项目时可以按照该文件提供的格式进行引用。
9. CONTRIBUTING
- 这是项目的贡献指南,告诉开发者如何为该项目做贡献,例如如何提交代码、报告bug等。
10. LICENSE
- 这里包含项目的开源许可证,说明了您可以在什么条件下使用、修改、分发该项目。
11. mkdocs 文件夹
- 这个文件夹通常与生成项目文档相关,
mkdocs
是一种轻量级的静态站点生成器,常用于生成项目文档。
12. pyproject 文件
pyproject.toml
是Python的构建系统文件,用于定义如何构建Python项目,通常包括依赖项、构建工具等信息。
13. README
- 该文件包含项目的简要介绍、安装步骤、使用说明等。它是用户了解项目的第一步,通常提供项目的快速启动指南。
14. README.zh-CN
- 这是中文版的
README
文件,面向中文用户,提供与英文README
文件类似的介绍与说明,但使用中文书写。