YOLO11/ultralytics:环境搭建

前言

        人工智能物体识别行业应该已经饱和了吧?或许现在并不是一个好的入行时候。

        最近看到了各种各样相关的扩展应用,为了理解它,我不得不去尝试了解一下。

        我选择了git里非常受欢迎的yolo系列,并尝试了最新版本YOLO11或者叫它ultralytics

安装 

        在git里,官方主页留的安装方案并不怎么友好,如下图:

        实际上,你需要做的更多:

        1、单独安装符合你电脑GPU规格的pytorch

        如我之前的博客:pytorch-gpu版本安装_搭建pytorch环境(gpu版本)-CSDN博客 

         2、着手安装ultralytics

        这是建议至少安装的模块

pip install ul
<think>好的,用户想通过conda创建一个新环境,并且安装指定版本的多个包,特别是涉及到CUDA相关的包和PyTorch等。首先,我需要回忆conda创建环境的基本命令,然后考虑如何指定包版本。 用户提供的包列表中有很多特定版本,比如cycler==0.12.1,还有nvidia-cublas-cu12等等。这些可能需要通过conda或者pip安装。但有些包可能conda源里没有,只能通过pip安装,所以可能需要混合使用conda和pip命令。 首先,conda create的基本用法是conda create -n env_name python=版本号,然后可以在后面列出包及其版本。但有时候直接指定多个包版本可能会遇到依赖冲突,比如用户提到的ERROR: Cannot install salesforce-lavis==1.0.0和salesforce-lavis==1.0.2,这可能是因为版本之间依赖不兼容,需要解决。 接下来,我需要分步骤来指导用户。第一步是创建环境,指定Python版本,比如用户可能用的是Python3.10,但用户提供的命令中没有明确Python版本,可能需要补充。然后,在创建环境时,可以尝试同时安装一些包,但可能因为依赖问题失败,这时候可能需要分步安装,或者使用environment.yml文件。 另外,用户提到的CUDA相关包,如nvidia-cublas-cu12,这些可能需要从特定的channel安装,比如pytorch的channel。所以需要添加conda的源,比如清华源,或者pytorch的官方源。引用中的参考[2]提到了添加清华源的方法,可能需要用户先配置好源,避免下载慢或失败。 另外,有些包可能只能通过pip安装,比如opencv-contrib-python-headless==4.10.0.84,这时候需要在conda环境激活后使用pip安装。但要注意,conda和pip混合使用可能会导致依赖冲突,所以建议先尽量用conda安装,剩下的再用pip。 用户提供的包中有torch==2.3.1,可能需要指定channel为pytorch或者nvidia。例如,安装PyTorch时通常使用conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia,但用户指定了具体版本,可能需要查找对应的命令。 此外,用户可能遇到的问题包括依赖冲突,这时候需要按顺序安装,或者寻找兼容的版本组合。如果遇到冲突,可能需要先安装主要包(如PyTorch),再安装其他依赖。 最后,建议用户使用environment.yml文件来管理环境配置,这样可以一次性声明所有依赖,方便复用和分享。同时,提醒用户在创建环境后激活环境,再安装其他包,避免安装到base环境。 总结步骤应该是:1. 创建环境,2. 激活环境,3. 安装conda可用的包,4. 用pip安装剩余包,5. 处理可能的依赖冲突,6. 验证安装。同时,注意源的配置和版本兼容性。</think>### 如何通过 conda 创建新环境并安装指定版本的包? #### **步骤 1:创建新环境** 使用以下命令创建名为`your_env_name`的新环境(替换`your_env_name`为实际名称): ```bash conda create -n your_env_name python=3.10 # 指定Python版本 ``` 若需直接安装部分包,可在命令后添加包名和版本,例如: ```bash conda create -n your_env_name python=3.10 numpy=2.2.4 jinja2=3.1.4 ``` --- #### **步骤 2:激活环境** 创建完成后激活环境: ```bash conda activate your_env_name ``` --- #### **步骤 3:安装指定版本的包** ##### **通过 conda 安装** 1. **优先使用 conda 安装兼容性较高的包**: ```bash conda install cycler=0.12.1 filelock=3.15.4 setuptools=75.8.0 ``` 2. **安装 CUDA 相关包**: 添加 PyTorch 和 NVIDIA 的 conda 源(参考[^2]): ```bash conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/ conda install nvidia-cublas-cu12=12.1.3.1 nvidia-cudnn-cu12=8.9.2.26 ``` ##### **通过 pip 安装** 对于 conda 仓库中不存在的包或版本(如`opencv-contrib-python-headless==4.10.0.84`): ```bash pip install pillow==11.1.0 opencv-contrib-python-headless==4.10.0.84 ``` ##### **安装 PyTorch 套件** 指定 PyTorch 版本和 CUDA 版本(参考[^2]): ```bash conda install pytorch=2.3.1 torchvision=0.18.1 torchaudio=2.3.1 cudatoolkit=12.1 -c pytorch ``` --- #### **步骤 4:处理依赖冲突** 若出现类似`ERROR: Cannot install package1 and package2`的冲突(参考[^4]): 1. **尝试调整安装顺序**,先安装核心依赖(如 PyTorch、CUDA)。 2. 使用`conda install --no-deps`跳过依赖检查(谨慎使用): ```bash conda install --no-deps package_name=version ``` 3. 使用 pip 的`--ignore-installed`选项强制覆盖: ```bash pip install package_name==version --ignore-installed ``` --- #### **步骤 5:验证安装** 检查关键包版本: ```bash conda list | grep "torch\|numpy\|opencv" pip list | grep "ultralytics\|pillow" ``` --- ### **补充建议** 1. **使用环境配置文件(`environment.yml`)**: ```yaml name: your_env_name channels: - pytorch - nvidia - defaults dependencies: - python=3.10 - numpy=2.2.4 - pip - pip: - ultralytics==8.2.48 ``` 通过以下命令创建环境: ```bash conda env create -f environment.yml ``` 2. **重置 conda 源**(若下载失败,参考[^2]): ```bash conda config --remove-key channels conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/ conda config --set show_channel_urls yes ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值