高等代数复习:特征值的估计

文章目录

本篇文章适合个人复习翻阅,不建议新手入门使用

特征值的估计

戈氏圆盘第一定理(Gerschgorin(戈尔斯格里)圆盘定理)
R i R_i Ri 表示 A A A 的第 i i i 行元素去掉 a i i a_{ii} aii 后的模长之和,即
R i = ∑ j = 1 , j ≠ i n ∣ a i j ∣ R_i=\sum\limits_{j=1,j\neq i}^n|a_{ij}| Ri=j=1,j=inaij

A = ( a i j ) n × n A=(a_{ij})_{n\times n} A=(aij)n×n n n n 阶复矩阵,则 A A A 的特征值在复平面上的下列圆盘(戈氏圆盘)中:
∣ z − a i i ∣ ≤ R i , i = 1 , 2 , … , n |z-a_{ii}|\leq R_i,i=1,2,\dots,n zaiiRi,i=1,2,,n

证明
即证任取特征值 λ \lambda λ,存在一个戈氏圆盘包含它

A x = λ x Ax=\lambda x Ax=λx x x x 的分量中 x r x_r xr 模最大,则
( λ 0 − a r r ) x r = a r 1 x 1 + ⋯ + a r , r − 1 x r − 1 + a r , r + 1 x r + 1 + ⋯ + a r n x n (\lambda_0-a_{rr})x_r=a_{r1}x_1+\cdots+a_{r,r-1}x_{r-1}+a_{r,r+1}x_{r+1}+\cdots +a_{rn}x_n (λ0arr)xr=ar1x1++ar,r1xr1+ar,r+1xr+1++arnxn

两端取绝对值,由三角不等式即得
∣ λ 0 − a r r ∣ ∣ x r ∣ ≤ R r ∣ x r ∣ |\lambda_0-a_{rr}||x_r|\leq R_r|x_r| λ0arr∣∣xrRrxr

戈氏圆盘第二定理
设矩阵 A = ( a i j ) n × n A=(a_{ij})_{n\times n} A=(aij)n×n n n n 个戈氏圆盘分成若干个连通区域,若其中一个连通区域含有 k k k 个戈氏圆盘,则有且只有 k k k 个特征值落在这个连通区域内(计重数)

证明上述定理之前,先不加证明地给出如下两个结论
定理 1
n n n 次首一复系数多项式
f ( x ) = x n + a 1 x n − 1 + ⋯ + a n − 1 x + a n f(x)=x^n+a_1x^{n-1}+\cdots+a_{n-1}x+a_n f(x)=xn+a1xn1++an1x+an

f ( x ) f(x) f(x) n n n 个根 λ 1 , … , λ n \lambda_1,\dots,\lambda_n λ1,,λn 作为整体是 a 1 , a 2 , … , a n a_1,a_2,\dots,a_n a1,a2,,an 的连续函数,即对任意 ε > 0 \varepsilon>0 ε>0,存在 δ > 0 \delta>0 δ>0,使得对任意满足 ∣ a ~ i − a i ∣ < δ |\tilde{a}_i-a_i|<\delta a~iai<δ 的任意多项式
f ~ ( x ) = x n + a ~ 1 x n − 1 + ⋯ + a ~ n − 1 x + a ~ n \tilde{f}(x)=x^n+\tilde{a}_1x^{n-1}+\cdots+\tilde{a}_{n-1}x+\tilde{a}_n f~(x)=xn+a~1xn1++a~n1x+a~n

f ~ ( x ) \tilde{f}(x) f~(x) n n n 个根存在一个排列 λ ~ 1 , … , λ ~ n \tilde{\lambda}_1,\dots,\tilde{\lambda}_n λ~1,,λ~n,成立
∣ λ ~ i − λ i ∣ < ε |\tilde{\lambda}_i-\lambda_i|<\varepsilon λ~iλi<ε

定理2
设实轴上的区间 D D D A : D → M n ( C ) A:D\to M_n(\mathbb{C}) A:DMn(C) 是一个取值为复矩阵的连续函数,则 A ( t ) A(t) A(t) n n n 个特征值 λ 1 ( t ) , … , λ n ( t ) \lambda_1(t),\dots,\lambda_n(t) λ1(t),,λn(t) 都是关于 t t t 的连续函数

戈氏定理的证明
考虑如下矩阵
A ( t ) = ( a 11 t a 12 ⋯ t a 1 n t a 21 a 22 ⋯ t a 2 n ⋮ ⋮ ⋮ t a n 1 t a n 2 ⋯ a n n ) A(t)=\begin{pmatrix} a_{11}&ta_{12}&\cdots &ta_{1n}\\ ta_{21}&a_{22}&\cdots &ta_{2n}\\ \vdots&\vdots&&\vdots\\ ta_{n1}&ta_{n2}&\cdots&a_{nn}\\ \end{pmatrix} A(t)= a11ta21tan1ta12a22tan2ta1nta2nann

显然 A ( 1 ) = A A(1)=A A(1)=A A ( 0 ) = diag ⁡ { a 11 , … , a n n } A(0)=\operatorname{diag}\{a_{11},\dots,a_{nn}\} A(0)=diag{a11,,ann}

这说明 t t t 0 0 0 1 1 1 A ( t ) A(t) A(t) 的特征值不会超出圆盘
∣ z − a i i ∣ ≤ R i |z-a_{ii}|\leq R_i zaiiRi

由上述定理2, A A A 在这 k k k 个圆盘内至少有 k k k 个特征值,又该结论对所有连通区域成立,则 k k k 个圆盘内只含有 k k k 个特征值

参考书:《高等代数学》谢启鸿 姚慕生 吴泉水 编著

  • 7
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值