回归
- 单连续数值输出
- 输出值在自然区间
- 损失函数: 跟真实值的区别作为损失
分类
- 可以有多个输出
- 输出i是预测为第i类的置信度 (Confident level)
- 对类别进行有效编码y_1, y_2, ..., y_n,然后可以用均方损失(Mean Square Error, MSE)做训练,最后取置信度最高的结果作为预测
- 只关心预测结果是否对正是答案的置信度比较大
- 用softmax可以得到每个类的预测置信度
- 用cross-entropy来衡量预测与标号的分别
--
参考:
- 动手学深度学习v2