回归 vs 分类

回归

  • 单连续数值输出
  • 输出值在自然区间
  • 损失函数: 跟真实值的区别作为损失

分类

  • 可以有多个输出
  • 输出i是预测为第i类的置信度 (Confident level)
  • 对类别进行有效编码y_1, y_2, ..., y_n,然后可以用均方损失(Mean Square Error, MSE)做训练,最后取置信度最高的结果作为预测
  • 只关心预测结果是否对正是答案的置信度比较大
  • softmax可以得到每个类的预测置信度
  • cross-entropy来衡量预测与标号的分别

 

 

--

参考:

  1. 动手学深度学习v2
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值