一、实验名称
实验四 RC一阶线性电路暂态过程的观测
二、实验目的:
测定RC一阶电路的零输入响应、零状态响应及全响应。
学习电路时间常数的测量方法。
掌握有关积分电路的概念。
进一步学会用示波器观测波形。
三、实验原理:
RC一阶电路的零输入响应和零状态响应分别按指数规律衰减和增长,其变化的快慢决定于电路的时间常数τ。
时间常数τ的测定方法:
用示波器测得零输入响应的波形如图4-1(a)所示。根据一阶微分方程的求解得知uc=Ume-t/RC=Ume-t/τ。当t=τ时,Uc(τ)=0.368Um。此时所对应的时间就等于τ。亦可用零状态响应波形增加到0.632Um所对应的时间测得,如图4-1(c)所示。
(a) 零输入响应 (b) RC一阶电路 (c) 零状态响应
图1
一个简单的RC串联电路,在方波序列的重复激励下,如图2(b)所示。当满足τ=RC<<T/2(T为方波信号的重复周期),且由R端作为响应输出,这就成了一个微分电路,因为此时电路的输出信号电压与输入信号电压的微分成正比,可得到正负脉冲。
若将图4-2(b)中的R与C位置调换一下,如图2(a)所示。当电路参数的选择满足τ=RC > >T/2条件,且由C端作为响应输出,即为积分电路,因为此时电路的输出信号电压与输入信号电压的积分成正比,可得到三角波。
图2
四、实验时间:
五、实验仪器:
函数信号发生器,双踪示波器,动态电路实验板
六、实验步骤:
从电路板上选R=10KΩ,C=6800pF组成如图1(b)所示的RC充放电电路。ui为信号发生器输出的UP-P=3V、f=1KHz的方波电压信号,并通过两根同轴电缆线,将激励源ui和响应uC的信号分别连至示波器的两个输入口YA和YB。这时可在示波器的屏幕上观察到激励与响应的变化规律,请测出时间常数τ,并用方格纸按1:1 的比例描绘波形,并与参数值(理论值τ=RC)的计算结果作比较。计入表1.
从电路板上选R=30KΩ,C=6800pF,再次测出时间常数τ,并用方格纸按1:1 的比例描绘波形,并与参数值(理论值τ=RC)的计算结果作比较。计入表1.
电阻不变,改变电容。令R=10KΩ,C=0.1μF,组成积分电路,观察并用方格纸按1:1 的比例描绘波形。
图3
七、实验结果:
表1测量数据记录表
R和C | 计算(us) | 测量(us) | 误差(us) |
R=10kΩ c=6800pF | 68 | 64 | 4 |
R=30kΩ C=6800pF | 204 | 208 | 4 |
R=10kΩ c=6800pF
R=30kΩ C=6800pF
R=10KΩ,C=0.1μF,三角波图形。
八、实验结果分析
时间常数是RC电路的一个重要参数,它反映了电路响应速度的快慢。在实验中,我们可以通过观察电路充放电过程中电压或电流的变化,测量时间常数的大小。在RC电路中,电阻和电容值是两个重要的参数,它们决定了电路的响应速度和稳定性。在实验中,我们可以通过改变电阻和电容值的大小,观察电路响应的变化,进而分析电路特性。