基于 LSTM 的分布式能源发电预测(Matlab代码实现)

文章介绍了LSTM(长短期记忆网络)在处理非线性时间序列数据,如VFAP供暖系统的负荷预测中的应用。LSTM解决了RNN的梯度消失问题,通过门控结构实现记忆功能。文章提供了基于LSTM的Matlab仿真结果,并列出了相关参考文献。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  

📋📋📋本文目录如下:⛳️⛳️⛳️

目录

1 长短期记忆神经网络

1.1 网络介绍

1.2 网络训练

2 基于 LSTM 的分布式能源发电预测matlab仿真结果

3 参考文献 

4 Matlab代码实现


1 长短期记忆神经网络

1.1 网络介绍

VFAP 系统的供暖负荷数据为非线性数据,且具有时间连续性, 处理此类问题首选具有时间

步的循环神经网络 (Recurrent Neural Network,RNN),但随着采集数据量的增加,RNN 在训练时容易出现梯度消失问题, 这就导致过早的数据在训练时容易丢失。 LSTM 作为 RNN 的一种变体,可以解决 RNN 在训练时的梯度消失及梯度爆炸问题, 较多的用于非线性时间按序列的预测中,LSTM 的网络结构如图 5所示。

                                          LSTM 网络结构

网络采用 3 个门控结构, 使隐藏层变为具有记忆功能的细胞。 其记忆功能为:

                      \left\{\begin{array}{l} f_{t}=\sigma\left(W_{\mathrm{fx}} x_{t}+W_{\mathrm{fh}} h_{t-1}+W_{\mathrm{fc}} h_{t-1}+b_{\mathrm{f}}\right) \\ i_{t}=\sigma\left(W_{\mathrm{ix}} x_{t}+W_{\mathrm{ih}} h_{t-1}+W_{\mathrm{ic}} h_{t-1}+b_{\mathrm{i}}\right) \\ o_{t}=\sigma\left(W_{\mathrm{ox}} x_{t}+W_{\mathrm{oh}} h_{t-1}+W_{\mathrm{oc}} h_{t-1}+b_{\mathrm{o}}\right) \\ \overline{\mathrm{c}}_{t}=\tanh \left(W_{\mathrm{cx}} x_{t}+W_{\mathrm{ch}} h_{t-1}+b_{\mathrm{c}}\right) \\ c_{t}=f_{t} \cdot c_{t-1}+i_{t} \cdot \overline{\mathrm{c}_{t}} \\ h_{t}=o_{t} \tanh \left(c_{t}\right) \end{array}\right.

式中:ft,it,ot,ct 分别为遗忘门、输入门、输出门和记忆细胞状态量;Wfx,Wix,Wox 为输入层 xt 和隐含层 ht 在 t 时刻的关联权重;Wfh,Wih,Woh 为隐含层在 t~t-1 时刻的关联权重;Wfc,Wic,Woc 为细胞在t~t-1 时刻的关联权重;Wcx,Wch 分别为细胞与输入及细胞与隐含层之间的关联权重;bf,bi,bo,bc 为各个门控单元和细胞的偏置量;ht-1 为上一单元细胞的输出量,ht 为 t 时刻细胞的输出值;σ 为 sigmoid 激活函数。

1.2 网络训练

规定输入层数据为 VFAP 供暖系统的多特征量表示为:

                             \left[\begin{array}{c} \boldsymbol{F}_{1} \\ \boldsymbol{F}_{2} \\ \cdots \\ \boldsymbol{F}_{n} \end{array}\right]=\left[\begin{array}{cccc} f_{1,1} & f_{1,2} & \cdots & f_{1, m} \\ f_{2,1} & f_{2,2} & \cdots & f_{2, m} \\ \cdots & \cdots & \cdots & \cdots \\ f_{n, 1} & f_{n, 2} & \cdots & f_{n, m} \end{array}\right]

LSTM 网络输入层的样本格式 为(samples,steps,features),samples 为每个训练的批次,steps为每次滑动的特征步长,features 为输入参数特征量。 其维度计为 m,设供暖期系统运行数据为 M,时间步长大小为 t,特征个数为 f,则该系统共有M-t 个样本, 基于 LSTM 神经网络的 VFAP 系统负荷预测具体步骤如下。

             

2 基于 LSTM 的分布式能源发电预测matlab仿真结果

 

 

 

 

 

 

 

 

 

 

 

 

3 参考文献 

部分理论引用网络文献,若有侵权请联系博主删除。 

[1]胡洋,程志江,崔澜.基于LSTM的变频太阳能-空气源热泵系统逐时负荷预测研究[J].可再生能源,2022,40(07):866-873.DOI:10.13941/j.cnki.21-1469/tk.2022.07.017.

[2]毕贵红,赵鑫,李璐,陈仕龙,陈臣鹏.双模式分解CNN-LSTM集成的短期风速预测模型[J/OL].太阳能学报:1-10[2022-08-09].DOI:10.19912/j.0254-0096.tynxb.2021-1307.

[3]赵鑫,陈臣鹏,毕贵红,陈仕龙.基于PAM-SSD-LSTM的短期风速预测[J/OL].太阳能学报:1-7[2022-08-09].DOI:10.19912/j.0254-0096.tynxb.2021-0900.

4 Matlab代码实现

要基于LSTM模型实现温度预测Matlab代码,首先需要导入相关的工具包,包括Deep Learning Toolbox和Neural Network Toolbox。然后,可以按照以下步骤进行实现: Step 1: 数据准备 首先,需要准备用于训练和测试的温度数据集。可以使用历史的温度数据作为输入特征,将未来某个时间点的温度作为目标输出。数据集可以是一个时间序列的数组,每一行代表一个时间步。 Step 2: 构建LSTM网络模型 使用LSTM网络是因为其在处理时间序列数据方面具有优势。在Matlab中,可以使用深度学习网络设计工具箱来创建LSTM网络模型。具体可以使用下面的代码: ``` layers = [ ... sequenceInputLayer(inputSize) ... lstmLayer(hiddenSize,'OutputMode','sequence') ... fullyConnectedLayer(outputSize) ... regressionLayer]; net = trainNetwork(XTrain, YTrain, layers, options); ``` 其中,inputSize表示输入特征的大小,hiddenSize表示隐藏层中的神经元数量,outputSize表示输出的大小。XTrain和YTrain分别表示训练集的输入特征和目标输出。 Step 3: 模型训练 利用准备好的训练数据集,使用trainNetwork函数对LSTM模型进行训练。可以设定训练的参数和选项,如迭代次数、学习率等。具体可以使用如下代码: ``` options = trainingOptions('adam', ... 'MaxEpochs',100, ... 'GradientThreshold',1, ... 'InitialLearnRate',0.01, ... 'LearnRateSchedule','piecewise', ... 'LearnRateDropFactor',0.1, ... 'LearnRateDropPeriod',50, ... 'Verbose',0); net = trainNetwork(XTrain, YTrain, layers, options); ``` Step 4: 模型预测 训练完成后,可以使用训练好的LSTM模型进行预测。首先,需要准备好测试数据集,然后使用trainedNetwork函数对测试数据进行预测。具体可以使用如下代码: ``` YPred = predict(net, XTest); ``` 其中,XTest表示测试集的输入特征。 Step 5: 结果评估 最后,可以评估预测结果的准确性。可以使用一些指标,如均方根误差(RMSE)或平均绝对百分比误差(MAPE),来衡量预测结果和实际观测值之间的差异。 以上就是基于LSTM模型的温度预测Matlab代码实现过程。希望可以帮助到你!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值