预测模型
文章平均质量分 92
涵盖卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM等多种机器学习算合智能优化算法matlab仿真展,更多代码和期刊发表合作可关注微信公众号天天Matlab
天天Matlab科研工作室
:某大厂资深算法工程师,从事Matlab算法仿真工作10年,擅长智能优化算法、神经网络预测、机器学习、信号处理、元胞自动机、图像处理、路径规划、无人机、无线传感器网络、车间调度、生产调度等多种领域的Matlab仿真,更多仿真源码、算法改进、Matlab项目和期刊发表可私信合作。
展开
-
【CNN分类】基于马尔可夫转移场卷积网络多头注意力机制 MTF-CNN-Mutilhead-Attention实现多特征故障识别附matlab代码
柴油机作为重要的动力源,在工业生产、交通运输等领域发挥着至关重要的作用。然而,柴油机在运行过程中容易受到各种因素的影响,导致故障发生,进而影响生产效率、安全性和经济效益。因此,对柴油机故障进行准确、及时的诊断至关重要。传统的柴油机故障诊断方法主要依靠人工经验和专家规则,存在效率低、诊断结果不稳定等问题。近年来,随着深度学习技术的快速发展,基于深度学习的柴油机故障诊断方法得到了广泛应用,并取得了显著进展。原创 2024-06-02 12:57:20 · 420 阅读 · 0 评论 -
【LSTM分类】基于卷积长短期记忆神经网络融合多头注意力机制CNN-LSTM-Mutilhead-Attention实现柴油机故障诊断附matlab代码
柴油机作为重要的动力源,在工业生产、交通运输等领域发挥着至关重要的作用。然而,柴油机在运行过程中容易受到各种因素的影响,导致故障发生,进而影响生产效率、安全性和经济效益。因此,对柴油机故障进行准确、及时的诊断至关重要。传统的柴油机故障诊断方法主要依靠人工经验和专家规则,存在效率低、诊断结果不稳定等问题。近年来,随着深度学习技术的快速发展,基于深度学习的柴油机故障诊断方法得到了广泛应用,并取得了显著进展。原创 2024-06-02 12:48:21 · 359 阅读 · 0 评论 -
【DBO-CNN-LSTM-Multihead-Attention预测】基于蜣螂算法优化多头注意力机制的卷积神经网络结合长短记忆神经网络实现温度预测附matlab代码
温度预测在多个领域具有重要意义,例如能源管理、气象预报、农业生产等。随着全球气候变化和人类活动的影响,准确预测温度变得越来越重要。近年来,深度学习技术在时间序列预测方面取得了显著进展,特别是卷积神经网络 (CNN) 和长短记忆神经网络 (LSTM) 的结合,为温度预测提供了新的思路。然而,传统方法在处理复杂的时空依赖性和非线性特征方面存在局限性。为了克服这些挑战,本文提出了一种基于蜣螂算法优化多头注意力机制的卷积神经网络结合长短记忆神经网络 (DBO-CNN-LSTM-Multihead-Attention原创 2024-06-02 12:30:02 · 292 阅读 · 0 评论 -
一文解决,Matlab故障诊断 | 卷积神经网络-双向长短期记忆神经网络CNN-BiLSTM组合模型的故障诊断
随着工业自动化程度的不断提高,设备运行状态的监测和故障诊断变得越来越重要。传统的故障诊断方法通常依赖于专家经验和规则库,存在效率低、泛化能力弱等问题。近年来,深度学习技术的快速发展为故障诊断领域带来了新的机遇。其中,卷积神经网络(CNN)和双向长短期记忆神经网络(BiLSTM)凭借其强大的特征提取和时间序列建模能力,在故障诊断方面展现出了巨大潜力。CNN-BiLSTM组合模型CNN-BiLSTM组合模型结合了CNN和BiLSTM的优点,能够有效地处理包含空间特征和时间序列特征的复杂工业数据。卷积神经网络(C原创 2024-06-02 12:27:16 · 1032 阅读 · 1 评论 -
【TCN回归预测】基于变分模态分解多头注意力机制的时间卷积神经网络结合双向门控单元VMD-TCN-BiGRU-MATT实现数据回归预测附matlab代码
近年来,光伏发电作为一种清洁能源,在全球范围内得到了快速发展。然而,光伏发电具有强烈的随机性和间歇性,准确预测光伏发电量对于电网调度和能源管理至关重要。本文提出了一种基于变分模态分解(VMD)、时间卷积神经网络(TCN)、双向门控循环神经网络(BiGRU)和多头注意力机制(MATT)的混合模型,用于光伏发电预测。该模型首先利用VMD将原始光伏功率时间序列分解成多个具有不同频率和振幅的模态分量,以提取不同时间尺度下的特征信息。然后,将每个模态分量输入到TCN中,以学习时间序列的复杂依赖关系。原创 2024-06-02 12:20:19 · 538 阅读 · 0 评论 -
【数据降维】基于本征正交分解POD数据降维模型Matlab实现
在科学研究和工程应用中,我们经常会遇到高维数据,这给数据存储、分析和处理带来了巨大挑战。数据降维技术旨在将高维数据转化为低维数据,同时尽可能保留原始数据的关键信息。本征正交分解 (Proper Orthogonal Decomposition,POD) 是一种常用的数据降维方法,它能够有效地提取数据中的主要特征,并将其压缩到更低维的空间。POD 方法的核心思想是寻找一组正交基,能够尽可能地解释原始数据中的方差。原创 2024-06-02 12:14:38 · 979 阅读 · 0 评论 -
【RBF分类】基于径向基神经网络的柴油机故障诊断附matlab代码
柴油机作为一种重要的动力设备,广泛应用于船舶、电力、交通等领域。随着柴油机技术的发展,其结构日益复杂,故障诊断也变得更加困难。传统的故障诊断方法主要依赖专家经验和人工检测,效率低、准确率不高,难以满足现代柴油机运行的可靠性和安全性要求。近年来,随着人工智能技术的发展,神经网络技术在柴油机故障诊断领域得到广泛应用。其中,径向基神经网络(RBF)以其良好的非线性逼近能力和快速学习速度,成为柴油机故障诊断研究的热点。原创 2024-06-02 11:09:18 · 947 阅读 · 0 评论 -
【诊断】基于粒子群自适应神经模糊系统进行乳腺癌诊断附matlab代码
乳腺癌是全球女性最常见的恶性肿瘤之一,早期诊断对提高患者生存率至关重要。传统的乳腺癌诊断方法包括乳腺X光检查、超声检查、活检等,但这些方法存在一定局限性,例如:放射性损伤、主观性强、难以识别早期病变等。随着人工智能技术的快速发展,基于机器学习的乳腺癌诊断方法近年来备受关注。神经模糊系统 (Neuro-Fuzzy System, NFS) 是一种将神经网络与模糊逻辑相结合的智能系统,其具有处理非线性、不确定性问题的能力,在医学诊断领域展现出巨大潜力。原创 2024-05-26 23:26:11 · 373 阅读 · 0 评论 -
【ARIMA时序预测】基于支持向量机结合ARIMA-SVM实现风电功率预测附matlab代码
风电作为一种清洁、可再生能源,在全球能源结构转型中扮演着越来越重要的角色。准确预测风电功率对于提高风电场运行效率、降低发电成本、优化电网调度至关重要。传统的风电功率预测方法主要基于统计学模型,例如自回归移动平均模型(ARIMA),但这些模型在处理非线性因素方面存在局限性。近年来,机器学习技术,特别是支持向量机(SVM)在非线性预测方面展现出优势,为风电功率预测提供了新的思路。本文将探讨一种基于支持向量机结合ARIMA-SVM的混合模型,用于提高风电功率预测精度。原创 2024-05-20 21:08:19 · 674 阅读 · 0 评论 -
【markov预测】基于马尔可夫链进行债券 s 评级附 Matlab 代码
在金融市场中,债券评级是投资者评估债券风险和收益的重要参考指标。其中,S 评级通常代表着债券的信用风险较高,需要投资者谨慎对待。准确预测债券的 S 评级变化,对于投资者进行投资决策至关重要。本文将探讨如何利用马尔可夫链模型进行债券 S 评级预测,并分析该方法的优劣势。一、马尔可夫链模型简介马尔可夫链是一种随机过程模型,它假设系统下一时刻的状态只依赖于当前状态,而与过去状态无关。在金融领域,马尔可夫链模型常用于分析和预测资产价格、信用评级等时间序列数据。二、基于马尔可夫链的债券 S 评级预测。原创 2024-05-18 23:21:57 · 1039 阅读 · 0 评论 -
【TCN回归预测】基于双向时间卷积网络-双向长短期记忆神经网络BiTCN-BiLSTM实现瓦斯浓度多输入单输出预测附matlab代码
瓦斯是煤矿生产过程中不可避免的灾害性气体,其主要成分为甲烷,易燃易爆,对矿工安全和生产效率造成严重威胁。准确预测瓦斯浓度对于预防瓦斯事故、保障矿工安全具有重要意义。近年来,随着人工智能技术的快速发展,神经网络模型在瓦斯浓度预测领域取得了显著成果。本文介绍一种基于双向时间卷积网络-双向长短期记忆神经网络(BiTCN-BiLSTM)的瓦斯浓度预测模型,该模型能够有效利用多输入数据,并充分考虑时间序列数据的依赖关系,从而提高预测精度。原创 2024-04-29 20:40:15 · 372 阅读 · 0 评论 -
【TCN回归预测】基于双向时间卷积网络-长短期记忆神经网络BiTCN-LSTM实现瓦斯浓度多输入单输出预测附matlab代码
瓦斯浓度预测是煤矿安全生产的重要保障,准确的预测模型可以有效地预防瓦斯事故的发生。本文提出了一种基于双向时间卷积网络-长短期记忆神经网络(BiTCN-LSTM)的瓦斯浓度多输入单输出预测模型。该模型利用双向时间卷积网络提取时间序列数据的局部特征和全局特征,并利用长短期记忆神经网络学习时间序列数据的长期依赖关系,最终实现瓦斯浓度的准确预测。原创 2024-04-29 20:37:00 · 770 阅读 · 0 评论 -
【TCN回归预测】基于麻雀算法优化时间卷积双向门控循环单元融合注意力机制SSA-TCN-BiGRU-Attention实现光伏多变量时间序列预测附matlab代码
光伏发电作为一种清洁可再生能源,在应对全球能源危机和环境问题方面发挥着越来越重要的作用。然而,光伏发电具有间歇性和波动性,准确预测其发电量对于电网安全稳定运行和电力市场交易至关重要。近年来,深度学习技术在时间序列预测领域取得了显著进展,其中时间卷积神经网络(TCN)和双向门控循环单元(BiGRU)因其强大的非线性建模能力而被广泛应用于光伏发电预测。本文提出了一种基于麻雀算法优化时间卷积双向门控循环单元融合注意力机制的SSA-TCN-BiGRU-Attention模型,用于光伏多变量时间序列预测。原创 2024-04-29 20:31:29 · 758 阅读 · 0 评论 -
【SAO-BiLSTM预测】基于雪融算法优化双向长短时记忆SAO-BiLSTM实现光伏数据预测附Matlab代码
风电作为一种清洁可再生能源,在全球能源结构中扮演着越来越重要的角色。然而,风电出力具有随机性和波动性,对电网的安全稳定运行带来了挑战。因此,准确预测风电出力对于提高电网运行效率和降低运行成本至关重要。近年来,深度学习技术在风电出力预测领域取得了显著进展,其中长短时记忆神经网络(LSTM)因其强大的时序数据处理能力而备受关注。然而,传统LSTM模型在处理长期依赖关系和非线性关系时存在一定的局限性。原创 2024-04-29 18:57:29 · 566 阅读 · 0 评论 -
【LSTM回归预测】基于雪融算法优化长短时记忆SAO-LSTM实现风电数据预测附Matlab代码
风电作为一种清洁可再生能源,在全球能源结构中扮演着越来越重要的角色。然而,风电出力具有随机性和波动性,对电网的安全稳定运行带来了挑战。因此,准确预测风电出力对于提高电网运行效率和降低运行成本至关重要。近年来,深度学习技术在风电出力预测领域取得了显著进展,其中长短时记忆神经网络(LSTM)因其强大的时序数据处理能力而备受关注。然而,传统LSTM模型在处理长期依赖关系和非线性关系时存在一定的局限性。原创 2024-04-29 18:51:29 · 1216 阅读 · 0 评论 -
【TCN回归预测】基于灰狼算法优化时间卷积双向门控循环单元融合注意力机制GWO-TCN-BiGRU-Attention实现光伏多变量时间序列预测附matlab代码
光伏发电作为一种清洁可再生能源,其发电量预测对于优化电网调度、提高电力系统运行效率具有重要意义。近年来,深度学习技术在光伏发电量预测领域取得了显著成果。本文提出了一种基于灰狼算法优化时间卷积双向门控循环单元融合注意力机制的光伏多变量时间序列预测模型。该模型首先利用时间卷积网络提取时间序列数据的局部特征,然后使用双向门控循环单元学习序列数据的长期依赖关系,最后融合注意力机制突出重要特征的影响。为了进一步提高模型的预测精度,本文采用灰狼算法对模型参数进行优化。原创 2024-04-29 18:32:51 · 425 阅读 · 0 评论 -
【柴油机故障诊断】基于径向基神经网络的柴油机故障诊断附matlab代码
柴油机作为一种重要的动力设备,广泛应用于船舶、车辆、发电等领域。然而,柴油机在运行过程中容易出现各种故障,影响其正常工作和使用寿命。因此,对柴油机故障进行及时准确的诊断至关重要。近年来,人工智能技术在各个领域得到广泛应用,其中神经网络在故障诊断方面展现出巨大潜力。本文将介绍一种基于径向基神经网络 (RBFNN) 的柴油机故障诊断方法,并对其原理、实现过程和应用效果进行详细阐述。径向基神经网络是一种前馈神经网络,其结构简单、学习速度快、泛化能力强。RBFNN 的基本结构包括输入层、隐含层和输出层。原创 2024-04-29 18:24:37 · 724 阅读 · 0 评论 -
【SVM回归预测】基于蚁狮算法优化支持向量机ALO-SVM的锂电池寿命预测附Matlab代码
随着电动汽车和储能系统的发展,锂电池作为关键能源存储装置,其寿命预测至关重要。支持向量机回归(SVR)是一种强大的机器学习算法,已被广泛应用于锂电池寿命预测。然而,传统的SVR存在参数选择困难、模型精度有限等问题。为了提高SVR模型的预测精度,本文提出了一种基于蚁狮算法(ALO)优化支持向量机(ALO-SVM)的锂电池寿命预测方法。原创 2024-04-29 02:29:02 · 411 阅读 · 0 评论 -
【TCN回归预测】基于霜冰算法优化时间卷积双向门控循环单元融合注意力机制RIME-TCN-BiGRU-Attention实现光伏多变量时间序列预测附matlab代码
光伏发电具有清洁环保、可再生等优点,是未来能源发展的重要方向。光伏发电出力受天气条件影响较大,具有高度的不确定性和波动性,准确预测光伏出力对于电力系统安全稳定运行至关重要。近年来,深度学习技术在时间序列预测领域取得了显著的成果,本文提出一种基于霜冰算法优化时间卷积双向门控循环单元融合注意力机制的模型(RIME-TCN-BiGRU-Attention)用于光伏多变量时间序列预测。原创 2024-04-29 00:44:10 · 1052 阅读 · 0 评论 -
【TCN分类】基于双向时间卷积神经网络BiTCN实现故障诊断附matlab代码
故障诊断是工业领域的重要任务,旨在及时发现设备故障,避免生产事故和经济损失。近年来,深度学习在故障诊断领域取得了显著成果,特别是时间序列数据的处理能力得到提升。本文提出了一种基于双向时间卷积神经网络(BiTCN)的故障诊断方法,该方法能够同时提取故障信号的前向和后向特征,提高故障诊断的准确率和鲁棒性。原创 2024-04-29 00:16:35 · 959 阅读 · 0 评论 -
【BP回归预测】基于蛇群SO优化BP神经网络实现风电功率预测Matlab代码
风电作为一种清洁可再生能源,近年来发展迅速。然而,风电功率具有随机性和波动性,给电网调度和运行带来挑战。因此,准确的风电功率预测对于提高电网安全性和经济性至关重要。本文提出了一种基于蛇群SO优化BP神经网络的风电功率预测方法。该方法首先利用蛇群SO算法对BP神经网络的权重和阈值进行优化,提高网络的预测精度。然后,利用历史风速、风向等数据训练优化后的BP神经网络,建立风电功率预测模型。最后,通过仿真实验验证了该方法的有效性。原创 2024-04-28 23:18:30 · 622 阅读 · 0 评论 -
【GSWOA-KELM预测】基于改进鲸鱼算法优化核极限学习实现风电回归预测附matlab代码
随着全球能源需求的不断增长,风能作为一种清洁、可再生的能源,其开发利用越来越受到重视。然而,风能具有间歇性和波动性,给电网的安全稳定运行带来了挑战。因此,准确的风电预测对于提高风电的利用率、降低电网运行成本至关重要。近年来,机器学习方法在风电预测领域得到了广泛应用,其中核极限学习机(KELM)因其学习速度快、泛化能力强等优点受到关注。然而,KELM的性能受核参数和正则化参数等参数的影响,需要进行参数优化。鲸鱼优化算法(WOA)是一种新的元启发式算法,具有全局搜索能力强、收敛速度快等优点。原创 2024-04-26 15:46:34 · 553 阅读 · 0 评论 -
【柴油机分类】基于混合策略改进的鲸鱼优化算法优化核极限学习机GSWOA-KELM实现柴油机故障诊断附Matlab实现
柴油机是重要的动力设备,广泛应用于船舶、车辆、发电机组等领域。柴油机故障会导致设备停机、安全事故甚至人员伤亡,因此对其进行故障诊断至关重要。近年来,基于机器学习的故障诊断方法得到了广泛关注,其中核极限学习机(KELM)因其学习速度快、泛化能力强等优点而被广泛应用。KELM是一种基于单隐层前馈神经网络的学习算法,它通过随机生成隐层节点并解析求解输出权重,避免了传统神经网络训练过程中的梯度下降和迭代优化,具有较高的学习效率。原创 2024-04-26 15:28:21 · 709 阅读 · 0 评论 -
【参数反演】基于神经网络的瑞利波反演的样本选择方法matlab代码
瑞利波反演是地震学中重要的研究课题,其目标是利用地震波形数据反演地下介质的结构和性质。近年来,基于神经网络的瑞利波反演方法得到了广泛关注,并取得了显著的进展。然而,神经网络模型的训练需要大量的样本数据,而瑞利波反演所需的样本数据通常难以获取。因此,样本选择方法对于基于神经网络的瑞利波反演方法至关重要。原创 2024-04-24 12:27:59 · 894 阅读 · 0 评论 -
【贝叶斯分类】基于朴素贝叶斯Naive Bayes 实现柴油机故障诊断附matlab代码
柴油机作为一种重要的动力设备,广泛应用于交通运输、农业生产、工业制造等领域。柴油机故障诊断是保证其正常运行和安全操作的关键环节。近年来,随着人工智能技术的快速发展,基于机器学习的柴油机故障诊断方法逐渐成为研究热点。其中,朴素贝叶斯 (Naive Bayes) 算法因其简单易用、计算效率高,在柴油机故障诊断领域得到了广泛应用。朴素贝叶斯算法是一种简单易用、计算效率高的分类算法,在柴油机故障诊断领域得到了广泛应用。原创 2024-04-23 09:09:28 · 1014 阅读 · 0 评论 -
【GPR回归预测】基于高斯过程回归GPR实现光伏预测附matlab代码
光伏发电作为一种清洁可再生能源,近年来发展迅速。然而,光伏发电受天气等因素影响较大,其输出功率具有波动性,难以预测。为了提高光伏发电系统的稳定性和可靠性,需要对其进行准确的功率预测。高斯过程回归(GPR)是一种强大的非参数回归模型,在光伏功率预测方面具有较好的效果。本文将介绍基于GPR的光伏功率预测方法,并通过实例进行验证。光伏发电是利用太阳能电池将太阳能直接转换为电能的一种发电方式。光伏发电系统主要由光伏电池组件、逆变器、储能系统等组成。原创 2024-04-22 16:11:23 · 362 阅读 · 0 评论 -
基于粒子群算法、灰狼算法和改进的灰狼算法优化支持向量机、极限学习机、随机森林算法的航空发动机气路智能诊断系统附matlab代码
航空发动机气路是发动机的重要组成部分,其健康状况直接影响发动机的性能和安全性。传统的航空发动机气路故障诊断方法主要依赖于专家经验和人工分析,效率低,准确率不高。近年来,机器学习技术在航空发动机故障诊断领域得到了广泛应用,取得了较好的效果。本文提出了一种基于粒子群算法、灰狼算法和改进的灰狼算法优化支持向量机、极限学习机、随机森林算法的航空发动机气路智能诊断系统。该系统利用粒子群算法、灰狼算法和改进的灰狼算法优化支持向量机、极限学习机、随机森林算法的超参数,提高模型的泛化能力和诊断精度。原创 2024-04-22 12:40:47 · 1474 阅读 · 0 评论 -
【GPR回归预测】基于粒子群算法优化高斯过程回归PSO-GPR实现光伏预测附matlab代码
光伏发电作为一种清洁可再生能源,近年来发展迅速。然而,光伏发电受天气条件影响较大,其输出功率具有随机性和波动性,给电网运行带来挑战。因此,准确预测光伏发电功率对于提高电网稳定性和利用率至关重要。高斯过程回归(GPR)是一种强大的非参数回归模型,它可以有效地处理非线性数据和不确定性。然而,GPR模型的超参数选择对预测精度有显著影响。粒子群算法(PSO)是一种高效的全局优化算法,可以有效地解决高维非线性优化问题。本文提出了一种基于粒子群算法优化高斯过程回归的模型(PSO-GPR)用于光伏发电功率预测。原创 2024-04-20 12:00:57 · 949 阅读 · 0 评论 -
【LSTM回归预测】基于变分模态分解结合卷积神经网络优化双向长短记忆神经网络VMD-CNN-BiLSTM实现风电数据预测附matlab代码
风电作为一种清洁可再生能源,在全球能源结构中扮演着越来越重要的角色。然而,风电出力具有随机性和波动性,给电网调度和运行带来巨大挑战。因此,准确预测风电出力至关重要。近年来,深度学习方法在风电预测领域取得了显著成果。本文提出一种基于变分模态分解结合卷积神经网络优化双向长短记忆神经网络(VMD-CNN-BiLSTM)的风电数据预测方法。该方法首先利用变分模态分解(VMD)将原始风电数据分解为多个内在模态分量,有效提取不同时间尺度的风电数据特征。然后,利用卷积神经网络(CNN)提取每个模态分量的局部特征。原创 2024-04-19 21:21:51 · 744 阅读 · 1 评论 -
【风电预测】基于三角拓扑聚合算法优化卷积神经网络结合注意力机制的长短记忆网络TTAO-CNN-LSTM-Attention实现风电功率多输入单输出回归预测附matlab代码
风电功率预测是风电场安全稳定运行的重要保障,近年来,深度学习方法在风电功率预测领域取得了显著成果。本文提出了一种基于三角拓扑聚合算法优化卷积神经网络结合注意力机制的长短记忆网络(TTAO-CNN-LSTM-Attention)模型,用于风电功率多输入单输出回归预测。该模型首先利用三角拓扑聚合算法对原始数据进行特征提取,然后将提取的特征输入到卷积神经网络和长短记忆网络中进行特征学习,最后通过注意力机制对学习到的特征进行加权融合,得到最终的风电功率预测结果。原创 2024-04-19 20:52:35 · 1005 阅读 · 0 评论 -
【电机故障诊断】基于粒子群算法优化注意力机制长短期记忆神经网络 PSO-LSTM-Attention实现电机故障诊断附matlab代码
随着人工智能技术的快速发展,神经网络在数据预测和模式识别等领域中发挥着重要作用。长短时记忆神经网络(LSTM)是一种特殊的循环神经网络,能够有效地处理序列数据。然而,传统的LSTM模型在处理长序列时存在着一些问题,如信息丢失和梯度消失等。为了解决这些问题,我们引入了粒子群优化(PSO)和注意力机制的概念,提出了一种新的神经网络模型:PSO-attention-LSTM。在PSO-attention-LSTM模型中,我们首先使用粒子群优化算法来优化LSTM网络的参数。原创 2024-04-17 12:48:43 · 769 阅读 · 0 评论 -
基于变分模态卷积神经网络结合门控循环单元VMD-CNN-GRU实现数据多维输入单输出预测附matlab代码
本文提出了一种基于变分模态卷积神经网络结合门控循环单元 (VMD-CNN-GRU) 的多维数据单输出预测模型。该模型将变分模态分解 (VMD) 与卷积神经网络 (CNN) 和门控循环单元 (GRU) 相结合,以有效地提取多维数据的特征并进行预测。VMD 用于对多维数据进行模态分解,提取不同时间尺度下的特征信息;CNN 用于提取空间特征信息;GRU 用于捕获时间序列数据的依赖关系。实验结果表明,VMD-CNN-GRU 模型在多维数据预测任务上取得了良好的效果,优于传统的预测模型。原创 2024-04-17 12:19:23 · 849 阅读 · 0 评论 -
【GCN分类】基于主成分分析结合图卷积神经网络PCA-GCN实现雷达辐射信号识别附matlab代码
随着雷达技术的快速发展,雷达辐射信号识别技术在军事、国防、通信等领域发挥着越来越重要的作用。传统的雷达辐射信号识别方法通常依赖于人工特征提取和分类器设计,效率低、鲁棒性差。近年来,深度学习技术在雷达辐射信号识别领域取得了显著成果,特别是图卷积神经网络(GCN)在处理非欧几里德数据方面展现出强大的优势。然而,雷达辐射信号通常具有高维、冗余等特点,直接使用GCN进行识别会导致模型复杂度高、训练效率低等问题。本文提出了一种基于主成分分析结合图卷积神经网络(PCA-GCN)的雷达辐射信号识别方法。原创 2024-04-17 12:10:24 · 626 阅读 · 0 评论 -
【LSTM回归预测】基于变分模态分解结合卷积神经网络优化长短记忆神经网络VMD-CNN-LSTM实现风电数据预测附matlab代码
风电作为一种清洁可再生能源,在全球能源结构中扮演着越来越重要的角色。然而,风电出力具有高度的不稳定性,难以准确预测,给电网调度和运行带来巨大挑战。近年来,基于深度学习的风电预测方法取得了显著的进展,其中变分模态分解 (VMD) 与卷积神经网络 (CNN) 优化长短记忆神经网络 (LSTM) 相结合的预测模型展现出良好的效果。本文将详细介绍 VMD-CNN-LSTM 模型的原理、实现步骤和预测效果,并与其他常用模型进行比较。原创 2024-04-17 12:06:18 · 1109 阅读 · 0 评论 -
【ARIMA时序预测】基于ARIMA实现股价序列预测附matlab代码
时间序列预测在金融、经济和科学等领域有着广泛的应用。本文介绍了自回归移动平均(ARIMA)模型,一种用于时序预测的强大统计技术。我们将演示如何使用ARIMA模型预测股价序列,并讨论模型选择和评估过程。引言股票市场是一个复杂且动态的环境,预测股价走势对于投资者和分析师至关重要。时间序列分析提供了一种对历史数据进行建模并预测未来值的有效方法。ARIMA模型是时间序列预测中常用的技术,它结合了自回归(AR)、移动平均(MA)和差分(I)成分。原创 2024-04-16 17:38:03 · 973 阅读 · 0 评论 -
【GCN分类】基于图卷积神经网络GCN实现雷达辐射信号识别附matlab代码
雷达辐射信号识别在军事和民用领域具有重要的应用价值。传统的雷达辐射信号识别方法主要基于手工特征提取和机器学习算法,存在特征提取复杂、泛化能力差等问题。本文提出了一种基于图卷积神经网络(GCN)的雷达辐射信号识别方法。GCN是一种用于处理图结构数据的深度学习模型,能够有效地提取雷达辐射信号的拓扑特征。实验结果表明,该方法在雷达辐射信号识别任务上取得了较好的性能,优于传统的机器学习方法。原创 2024-04-14 14:35:55 · 973 阅读 · 0 评论 -
独家首发 基于灰狼算法优化径向基神经网络GWO-RBF实现故障诊断附matlab代码
径向基神经网络(RBF)是一种广泛应用于故障诊断的非线性分类器。然而,传统RBF的中心和宽度参数通常是通过经验或启发式方法确定的,这可能会导致次优分类性能。本文提出了一种基于灰狼算法(GWO)优化RBF参数的故障诊断方法。GWO是一种元启发式算法,它模拟灰狼的社会等级结构和狩猎行为。通过将GWO应用于RBF参数优化,可以有效地搜索最优参数,从而提高故障诊断的准确性。1. 径向基神经网络(RBF)RBF是一种前馈神经网络,具有一个输入层、一个隐含层和一个输出层。原创 2024-04-14 14:16:36 · 1519 阅读 · 0 评论 -
基于麻雀算法优化多头注意力机制的卷积神经网络结合长短记忆神经网络实现温度预测SSA-CNN-BiLSTM-Multihead-Attention附matlab代码 替换数据即可 直接运行
温度预测在气象学和气候学中至关重要。本文提出了一种基于麻雀算法优化多头注意力机制的卷积神经网络结合长短记忆神经网络(SSA-CNN-BiLSTM-Multihead-Attention)的温度预测模型。该模型利用麻雀算法优化多头注意力机制,增强了模型对长期依赖关系的捕捉能力。同时,结合卷积神经网络和长短记忆神经网络,充分利用空间和时间特征,提高了预测精度。引言温度预测是气象学和气候学领域的一项重要任务。准确的温度预测可以为农业、交通、能源等行业提供决策支持。原创 2024-04-14 14:04:49 · 616 阅读 · 0 评论 -
【贝叶斯分类】基于朴素贝叶斯实现西储大学轴承数据时频特征提取和分类附matlab代码
本文介绍了如何使用朴素贝叶斯分类器对西储大学轴承数据进行时频特征提取和分类。西储大学轴承数据是一个广泛用于机器学习和故障诊断的公开数据集。朴素贝叶斯是一种简单但有效的分类算法,它基于贝叶斯定理。本文将详细介绍朴素贝叶斯分类器的原理,并展示如何将其应用于西储大学轴承数据的时频特征提取和分类。引言轴承是旋转机械中的关键部件,其故障会导致严重的设备损坏和停机。因此,对轴承进行故障诊断非常重要。时频分析是一种强大的工具,可用于从轴承振动信号中提取故障特征。原创 2024-04-11 12:20:56 · 960 阅读 · 0 评论 -
【故障诊断】基于长短时记忆神经网络结合注意力机制LSTM-Attention实现故障诊断附matlab代码
本文提出了一种基于长短时记忆神经网络(LSTM)结合注意力机制(Attention)的故障诊断方法。该方法利用LSTM网络对时序数据进行建模,并通过注意力机制关注故障特征,从而提高故障诊断的准确性。原创 2024-04-09 12:35:11 · 728 阅读 · 0 评论