【负荷预测】基于GRU-KAN的负荷预测研究(Python代码实现)

                        💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Python代码、数据


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于GRU-KAN的负荷预测研究

一、引言

负荷预测作为电力系统运行管理的重要环节,对于保障电力供需平衡、优化资源配置具有重要意义。随着智能电网和大数据技术的快速发展,负荷预测技术也在不断演进。本文旨在探讨基于门控循环单元(GRU)与Kolmogorov-Arnold网络(KAN)结合的负荷预测方法,即GRU-KAN模型,以期提高负荷预测的精度和稳定性。

二、模型介绍

  1. GRU(门控循环单元)

    GRU是一种特殊的循环神经网络(RNN),通过引入门控机制(重置门和更新门)解决了传统RNN在处理长序列时容易出现的梯度消失或梯度爆炸问题。GRU能够捕捉时间序列中的长期依赖关系,并在许多序列预测任务中表现出色。

  2. KAN(Kolmogorov-Arnold网络)

    KAN是一种基于Kolmogorov-Arnold定理的神经网络模型,其灵感来源于数学定理。KAN网络的核心特点是在网络的权重上应用可学习的激活函数,这些一维激活函数被参数化为样条曲线,从而使得网络能够以一种更灵活、更接近Kolmogorov-Arnold表示定理的方式来处理和学习输入数据的复杂关系。KAN网络在函数拟合、偏微分方程求解等方面表现出较高的准确性和可解释性。

  3. GRU-KAN结合

    将GRU和KAN结合起来的GRU-KAN模型,能够充分利用GRU在捕捉时间序列长期依赖关系方面的优势,以及KAN在处理复杂非线性关系方面的能力。这种组合模型在处理复杂时间序列数据时,能够更全面地提取信息,提高预测精度。

三、模型构建

  1. 数据预处理

    对原始负荷数据进行预处理,包括数据清洗(处理缺失值、异常值等)、数据变换(标准化、归一化等)以及特征选择等步骤。预处理后的数据将作为模型的输入。

  2. 模型结构设计

    • 输入层:接收预处理后的时间序列数据。
    • GRU层:利用GRU网络捕捉时间序列中的长期依赖关系。
    • KAN层:将GRU层的输出作为KAN网络的输入,利用KAN网络处理复杂的非线性关系。
    • 输出层:输出预测结果,即未来某时刻的负荷值。
  3. 模型训练与优化

    使用训练集对模型进行训练,并通过调整超参数(如学习率、批次大小、迭代次数等)来优化模型的性能。同时,可以采用交叉验证等方法来评估模型的稳定性和泛化能力。

四、实验结果与分析

通过实际数据集对GRU-KAN模型进行验证,实验结果表明该模型在负荷预测任务中表现出较高的预测精度和稳定性。与单一使用GRU或KAN的模型相比,GRU-KAN模型能够更准确地捕捉时间序列中的复杂关系,提高预测效果。

五、结论与展望

本文提出的基于GRU-KAN的负荷预测模型在电力负荷预测领域展现出了良好的性能。通过结合GRU和KAN的优势,该模型能够更有效地处理复杂时间序列数据,提高预测精度和稳定性。未来的研究可以进一步探索GRU-KAN模型在其他领域的应用,以及如何通过优化算法和模型结构来进一步提高预测性能。

📚2 运行结果

部分代码:

# 初始化存储各个评估指标的字典。
table = PrettyTable(['测试集指标','MSE', 'RMSE', 'MAE', 'MAPE','R2'])
for i in range(n_out):
    # 遍历每一个预测步长。每一列代表一步预测,现在是在求每步预测的指标
    actual = [float(row[i]) for row in Ytest]  #一列列提取
    # 从测试集中提取实际值。
    predicted = [float(row[i]) for row in predicted_data]
    # 从预测结果中提取预测值。
    mse = mean_squared_error(actual, predicted)
    # 计算均方误差(MSE)。
    mse_dic.append(mse)
    rmse = sqrt(mean_squared_error(actual, predicted))
    # 计算均方根误差(RMSE)。
    rmse_dic.append(rmse)
    mae = mean_absolute_error(actual, predicted)
    # 计算平均绝对误差(MAE)。
    mae_dic.append(mae)
    MApe = mape(actual, predicted)
    # 计算平均绝对百分比误差(MAPE)。
    mape_dic.append(MApe)
    r2 = r2_score(actual, predicted)
    # 计算R平方值(R2)。
    r2_dic.append(r2)
    if n_out == 1:
        strr = '预测结果指标:'
    else:
        strr = '第'+ str(i + 1)+'步预测结果指标:'
    table.add_row([strr, mse, rmse, mae, str(MApe)+'%', str(r2*100)+'%'])

return mse_dic,rmse_dic, mae_dic, mape_dic, r2_dic, table
# 返回包含所有评估指标的字典。

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]张惟东.基于CNN-LSTM-Attention的短期电力负荷预测研究[D].兰州理工大学,2022.

[2]姚芳,汤俊豪,陈盛华,等.基于ISSA-CNN-GRU模型的电动汽车充电负荷预测方法[J].电力系统保护与控制, 2023, 51(16):158-167.

[3]姚芳,汤俊豪,陈盛华,等.基于ISSA-CNN-GRU模型的电动汽车充电负荷预测方法[J].电力系统保护与控制, 2023, 51(16):158-167.

[4]姚程文、杨苹、刘泽健.基于CNN-GRU混合神经网络的负荷预测方法[J].电网技术, 2020, 44(9):8.DOI:10.13335/j.1000-3673.pst.2019.2058.

[5]谢志坚.基于CNN-BAS-GRU模型的短期电力负荷预测研究[J].现代计算机, 2023, 29(21):15-20.

[6]杨超.基于ISSA优化CNN-BiGRU-Self Attention的短期电力负荷预测研究[D].陕西理工大学,2024. 

🌈4 Python代码、数据

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值