💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
一、问题背景
旅行商问题(Traveling Salesman Problem, TSP)是一个经典的组合优化问题。它描述了一个销售员需要访问n个城市,每个城市只访问一次,然后返回起点的任务,目标是找到最短的路径。在二维平面中,每个城市可以被看作是一个点,而城市之间的道路可以被看作是连接这些点的线。
TSP问题在数学上可以表示为一个完全图,其中每个城市是一个节点,每条边代表两个城市之间的距离。销售员的任务是找到一条环状路径,经过每条边恰好一次,并返回起点,使得总距离最小。
二、遗传算法简介
遗传算法(Genetic Algorithm, GA)是一种模拟自然选择和遗传机制的优化算法。它通过“选择-交叉-变异”这三大操作,不断优化解,从而找到最优解。
- 编码:遗传算法不能直接处理问题空间的参数,因此必须通过编码将要求解的问题表示成遗传空间的染色体或者个体。在TSP问题中,每组个体代表一组城市路径顺序。
- 适应度评估:对每个个体计算其适应度,即评估解决方案的优劣程度。在TSP问题中,路径的总距离越短,适应度越高。
- 选择:按照适应度大小对个体进行选择,适应度较高的个体被选中的概率较大。常用的选择方法有轮盘赌、锦标赛、线性排名选择等。
- 交叉:从选择的个体中选取一对(或多对)进行交叉操作,生成新的个体。交叉模拟了生物学中的基因交换过程,通过交叉可以将两个个体的优良特征结合在一起。TSP问题中常用的交叉方法有部分匹配交叉(PMX)等。
- 变异:在一定的概率下,对新个体进行变异操作,即对其中的某些基因进行随机修改。变异模拟了自然界中基因发生突变的过程,有助于保持种群的多样性。TSP问题中常用的变异方法有随机交换路径中的两个城市等。
- 生成下一代种群:通过选择、交叉和变异操作,生成下一代种群,取代当前种群。
- 收敛检验:检查是否满足停止条件,如达到预定的迭代次数或找到足够优秀的解。如果满足条件,则停止进化过程,返回找到的最优解;否则继续进化。
三、遗传算法解决TSP问题的步骤
- 初始化种群:随机生成若干个合法路径作为种群。每个路径都是一个城市顺序的排列,表示销售员访问城市的顺序。
- 计算适应度:定义路径的适应度为路径总距离的倒数,路径越短适应度越高。使用距离矩阵来计算路径的总距离,距离矩阵是一个二维数组,其中每个元素表示两个城市之间的距离。
- 选择操作:根据适应度值的比例随机选择父代个体。常用的选择方法是轮盘赌选择。
- 交叉操作:将两条路径交叉生成新的子路径,保证子代路径合法。TSP问题中常用的交叉方法是部分匹配交叉(PMX)。
- 变异操作:随机交换路径中的两个城市,增加种群多样性。变异操作可以增加算法的搜索能力,避免过早收敛到局部最优解。
- 路径合法性检查:确保生成的路径完整且没有重复城市。在交叉和变异操作后,需要检查生成的路径是否合法,即每个城市只被访问一次。
- 终止条件:达到最大迭代次数或适应度不再显著提升时停止。当算法满足终止条件时,输出找到的最优解。
四、结论
遗传算法是一种有效的解决TSP问题的方法。通过模拟自然选择和遗传机制,遗传算法能够不断优化解,从而找到最优解或接近最优解的解决方案。在实际应用中,可以根据具体问题设计合适的编码方式、适应度函数、选择方法、交叉方法和变异方法,以提高算法的性能和效率。
在二维平面中有一组城市(点)。每个城市都有通往其他城市的道路。我们需要找到一个环路,这个环路在每个城市只出现一次,并且路径长度最小。有很多不同长度的路径。一条路径可以与另一条路径交叉并发生变异。见说明文档。运行tsp_ga_gui.m。要运行无GUI版本,请在子文件夹no_gui_version中运行tsp_ga.m
📚2 运行结果
部分代码:
nn=str2num(get(hnds.nn,'string')); % number of cities
ps=str2num(get(hnds.ps,'string')); % population size
r=asz*rand(2,nn); % randomly distribute cities
% r(1,:) -x coordinaties of cities
% r(2,:) -y coordinaties of cities
dsm=zeros(nn,nn); % matrix of distancies
for n1=1:nn-1
r1=r(:,n1);
for n2=n1+1:nn
r2=r(:,n2);
dr=r1-r2;
dr2=dr'*dr;
drl=sqrt(dr2);
dsm(n1,n2)=drl;
dsm(n2,n1)=drl;
end
end
% start from random closed pathes:
G=zeros(ps,nn); % genes, G(i,:) - gene of i-path, G(i,:) is row-vector with cities number in the path
for psc=1:ps
G(psc,:)=randperm(nn);
end
% to plot best path:
hpb=plot(NaN,NaN,'r-','parent',ax1);
ht=title(ax1,' ');
set(ax1,'NextPlot','add');
% plot nodes numbers
for n=1:nn
text(r(1,n),r(2,n),num2str(n),'color',[0.7 0.7 0.7],'parent',ax1);
end
plot(r(1,:),r(2,:),'k.','parent',ax1); % plot cities as black dots
axis(ax1,'equal');
set(ax1,'xlim',[-0.1*asz 1.1*asz]);
set(ax1,'ylim',[-0.1*asz 1.1*asz]);
hi=imagesc(G,'parent',ax2);
title(ax2,'color is city number');
colorbar('peer',ax2);
xlabel(ax2,'index in sequence of cities');
ylabel(ax2,'path number');
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)
[1]周辉仁,唐万生,牛犇.基于递阶遗传算法的多旅行商问题优化[J].计算机应用研究, 2009, 26(10):4.
[2]代坤,鲁士文,蒋祥刚.基于遗传算法的多人旅行商问题求解[J].计算机工程, 2004, 30(16):3.
[3]邓丽芳.遗传算法在旅行商问题中的应用研究[D].广东工业大学[2025-01-03].
🌈4 Matlab代码、文档
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取