在计算机视觉应用中,背景减除是一项至关重要的技术,它可以帮助我们从视频流中分离出动态的前景对象。OpenCV库提供了多种背景减除的方法,其中cv2.createBackgroundSubtractorMOG2
是一种非常有效的手段。
cv2.createBackgroundSubtractorMOG2
是OpenCV中用于创建背景减除器的一个函数,该方法基于混合高斯模型(GMM)和背景减除算法。MOG2代表“Mixture of Gaussian V2”,是OpenCV中用于背景/前景分割的算法之一。
1.工作原理
cv2.createBackgroundSubtractorMOG2
函数的工作原理主要基于混合高斯模型(GMM)。这种模型使用多个高斯分布来表征图像中每个像素点的颜色分布。以下是该函数工作原理的简要介绍:
模型初始化
在开始时,算法会对视频中的每个像素建立一个混合高斯模型。这个模型会学习并适应场景中的背景变化。
背景建模
随着新帧的到来,算法会更新每个像素的高斯分布。对于与现有高斯分布匹配良好的像素,这些分布会被更新以反映最新的像素值。对于不匹配任何现有分布的像素,会创建新的高斯分布或替换最不可能代表背景的高斯分布。
前景检测
如果某个像素的值与所有高斯分布都不匹配,或者只与表示前景的高斯分布匹配,则该像素被视为前景像素。通过这种方式,算法能够区分出动态的前景对象和静态的背景。
阴影检测(如果启用)
算法还可以检测