使用OpenCV进行实时性别和年龄识别

        在计算机视觉领域,使用深度学习技术进行实时性别和年龄识别是一项具有挑战性和实用性的任务。本文将深入解析一个使用OpenCV和预训练模型实现的实时性别和年龄识别代码,并逐行进行详细的注释解析,帮助读者理解代码的工作原理和实现细节。

import cv2
import numpy as np
from PIL import ImageDraw
from PIL import ImageFont
from PIL import Image

        首先,我们导入所需的库,包括OpenCV(cv2)、NumPy(numpy)和Python Imaging Library(PIL)。这些库用于图像处理和显示。

#-------模型初始化-----
# 模型(网络模型/预训练模型):face/age/gender(脸、年龄、性别)
faceProto="model/opencv_face_detector.pbtxt" # TensorFlow,模型的结构文件
faceModel="model/opencv_face_detector_uint8.pb"  # TensorFlow模型权重参数
ageProto="model/deploy_age.prototxt" # TensorFlow,模型的结构文件
ageModel="model/age_net.caffemodel"  # TensorFlow模型权重参数
genderProto="model/deploy_gender.prototxt" # TensorFlow,模型的结构文件
genderModel="model/gender_net.caffemodel"  # Tenso
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值