在计算机视觉领域,使用深度学习技术进行实时性别和年龄识别是一项具有挑战性和实用性的任务。本文将深入解析一个使用OpenCV和预训练模型实现的实时性别和年龄识别代码,并逐行进行详细的注释解析,帮助读者理解代码的工作原理和实现细节。
import cv2
import numpy as np
from PIL import ImageDraw
from PIL import ImageFont
from PIL import Image
首先,我们导入所需的库,包括OpenCV(cv2)、NumPy(numpy)和Python Imaging Library(PIL)。这些库用于图像处理和显示。
#-------模型初始化-----
# 模型(网络模型/预训练模型):face/age/gender(脸、年龄、性别)
faceProto="model/opencv_face_detector.pbtxt" # TensorFlow,模型的结构文件
faceModel="model/opencv_face_detector_uint8.pb" # TensorFlow模型权重参数
ageProto="model/deploy_age.prototxt" # TensorFlow,模型的结构文件
ageModel="model/age_net.caffemodel" # TensorFlow模型权重参数
genderProto="model/deploy_gender.prototxt" # TensorFlow,模型的结构文件
genderModel="model/gender_net.caffemodel" # Tenso