人工智能实现天气预报

本文介绍了华为的盘古气象大模型,该模型利用人工智能技术,实现了超过传统数值预报方法的预测精度和速度,特别是在全球气象预报上。模型基于3D Earth-Specific Transformer架构,处理3D不均匀气象数据,提供高分辨率的天气预测。通过对比实验,盘古气象大模型在多个气象要素和预测时间上的误差均低于传统方法,展示了AI在天气预报领域的潜力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ABC智慧教研平台是一款面向教育领域的综合平台,旨在提供教育教研的数字化解决方案。平台应用模块具有灵活、可定制的特点,可根据用户的需求和场景,部署各类应用模板,并批量快速启动。今天上海海文的教研团队带来的是一款人工智能气象模型的介绍。
现如今人工智能的应用范围逐渐扩大,进入我们的生活,气象预报也可通过人工智能的参与,提升准确度与效率。华为研究人员提出了一种基于人工智能(AI )的 高分辨率全球气象预报系统——盘古气象大模型,是首 个精度超过传统数值预报的AI方法,具有高性能和高精度的优势。

论文在arXiv上发布:Pangu-Weather: A 3D High-Resolution Model for Fast and Accurate Global Weather Forecast 已被Nature正刊接受

模型已在Github上开源: https://github.com/198808xc/Pangu-Weather

官方知乎帖子:华为云提出盘古气象大模型:中长期气象预报精度首次超过传统数值方法,速度提升10000倍以上
本文旨在介绍华为盘古气象大模型的模型结构、模型推理(输入数据准备+开源模型调用)、模型评估(预测精度评估)三个方面,让大家更好地用上大模型,体验大模型在天气预报中的应用。


天气预报是科学计算领域最重要的场景之一,对未来天气变化的预测,特别是对极端天气如暴雨、台风、干旱、寒潮的预测至关重要。

  • 数值天气预报在每日天气预报、极端灾害预警、气候变化预测等领域取得了巨大成功。
  • 随着算力增长的趋缓和物理模型的逐渐复杂化,高分辨率天气模式研发与应用面临诸多挑战。
  • 现有的AI预报方法精度仍然显著低于数值预报方法,并受到可解释性欠缺,极端天气预测不准等问题的制约。

模型简介


盘古气象大模型是首个精度超过传统数值预报方法的AI方法,1小时-7天预测精度均高于传统数值方法(欧洲气象中心的operational IFS),预测变量包括位势、湿度、风速、温度、海平面气压等。盘古气象模型的水平空间分辨率达到 0.25°×0.25° ,时间分辨率为1小时,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值