时间序列预测是一项重要的任务,可用于预测未来的趋势和模式。Transformer是一种强大的神经网络模型,最初用于自然语言处理任务,但也可以应用于时间序列预测。在本文中,我们将使用Transformer模型来预测北京的天气情况。我们将使用多变量输入(包括温度、湿度和风速等特征)来预测单变量输出(例如未来24小时的温度)。
首先,我们需要准备数据集。我们可以从气象站获取历史天气数据,包括温度、湿度、风速等多个特征。我们将使用这些特征作为输入,以预测未来24小时的温度作为输出。数据集应该包含足够的历史数据,以便模型能够学习到天气模式和趋势。
接下来,我们需要构建Transformer模型。Transformer模型由编码器和解码器组成。编码器负责将输入序列转换成隐藏表示,而解码器则使用隐藏表示生成输出序列。在我们的情况下,输入序列是多变量特征,输出序列是未来24小时的温度。
下面是使用PyTorch实现的Transformer模型的示例代码:
import torch
import torch.nn as nn