Pandas入门篇(一)-------Series篇(巨详细易懂!适合新手!!机器学习前置技术栈)

本文介绍了Pandas库中Series数据结构的基础知识,包括Series的概述、属性(如values、index、dtype等)、创建方式(列表、数组、字典等)、常用方法(如append、corr、describe等)以及算术和逻辑运算。Series作为数据科学中处理和分析数据的重要工具,本文提供了深入理解和操作Series的关键知识点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


在数据科学的世界中,数据处理和分析是不可或缺的一环。Pandas,作为Python中用于数据处理和分析的强大库,为我们提供了便捷、高效的数据结构以及丰富的数据处理功能。
Pandas的核心是两大数据结构:Series和DataFrame。这篇我们主要介绍一下Series的创建以及Series的各种属性和方法。
Series可以看作是一维的标签化数组,能够保存任何数据类型的数据,并带有标签(索引),使得我们可以轻松地访问和操作数据。

一、Series概述

  • Series是pandas库中的一个一维标签化数组对象。

  • 它可以保存任何数据类型的数据,如整数、浮点数、字符串、Python对象等,并且每个元素都带有一个标签(索引)。这个标签通常用于数据的定位和选取。

  • Series可以看作是一个字典与一维NumPy数组的结合体,它包含了一系列数据值以及与之相关联的数据标签(索引)。这些索引可以是整数,也可以是字符串或其他数据类型。通过索引,我们可以方便地对Series中的数据进行访问、修改和删除等操作。

  • 在数据分析和处理中,Series是非常有用的数据结构,它可以用于表示一列数据(如一个班级的成绩列表)或者具有相同属性的多个数据点(如一组股票的价格数据)。通过Series,我们可以对数据进行高效的操作和分析,从而发现数据中的规律和趋势。

  • 总之,Series是pandas库中一个非常重要的数据结构,它为我们提供了一种方便、灵活的方式来处理和分析一维数据。

二、Series 的属性

1.values:返回Series中的值数组,类型为ndarray。

这可以提供一个包含Series中所有元素的NumPy数组。

2.index:返回Series中的索引数组,类型为Index。

索引可以是任何类型,包括整数、标签、日期等,用于数据的定位和选取。

3.dtype:返回Series中元素的数据类型。

这可以帮助你了解Series中存储的数据类型,例如整数、浮点数、字符串等。

4.name:返回Series的名称。

Series对象可以有一个与之关联的名称,这可以用于标识或描述该Series。

5.ndim:返回Series的维度,固定为1。

因为Series是一维的,所以这个属性的值始终是1。

6.shape:返回Series中数据的形状。

固定为(n,),其中n表示Series的长度。这可以告诉你Series中有多少个元素。

7.size:返回Series中元素的数量。

等同于len(series)。这也是获取Series长度的一种方式。

8.empty:返回一个布尔值,表示Series是否为空。

如果Series没有任何元素,该属性将返回True。

import pandas as pd  
  
# 创建一个简单的Series对象  
s = pd.Series([1, 2, 3, 4, 5], index=['a', 'b', 'c', 'd', 'e'])  
  
# 访问Series的值  
print("Values:", s.values)  
  
# 访问Series的索引  
print("Index:", s.index)  
  
# 查看Series的数据类型  
print("Data type:", s.dtype)  
  
# 获取Series的名称(如果没有设置名称,则返回None)  
print("Name:", s.name)  
  
# 查看Series的维度  
print("Dimension:", s.ndim)  
  
# 查看Series的形状  
print("Shape:", s.shape)  
  
# 获取Series中元素的数量  
print("Size:", s.size)  
  
# 检查Series是否为空  
print("Is empty:", s.empty)  
  
# 使用mean()方法计算Series的均值  
print("Mean:", s.mean())  
  
# 使用astype()方法改变Series的数据类型  
s_str = s.astype(str)  
print("Series with string dtype:", s_str)  
  
# 为Series设置名称  
s.name = 'MySeries'  
print("Series name:", s.name)


#运行结果
# Values: [1 2 3 4 5]
# Index: Index(['a', 'b', 'c', 'd', 'e'], dtype='object')
# Data type: int64
# # Name: None
# Dimension: 1
# Shape: (5,)
# Size: 5
# Is empty: False
# Mean: 3.0
# Series with string dtype: a    1



三、Series 的创建

1.使用列表或数组创建Series

# 使用Python列表创建Series  
s1 = pd.Series([1, 2, 3, 4, 5])  
print(s1)  
 
# 使用NumPy数组创建Series  
import numpy as np  
s2 = pd.Series(np.array([10, 20, 30, 40]
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值