model = DensityMapRegressor(in_channels=256, reduction=8)
reduction
参数在 DensityMapRegressor
类中用于决定模型在上采样过程中的层级配置。具体来说,它决定了上采样过程中使用多少个 UpsamplingLayer
,从而影响输出的分辨率。
reduction
参数的作用
reduction
参数有两个主要的配置:8 和 16。这两个值决定了模型中 UpsamplingLayer
的层数和最终输出的分辨率。更具体地说:
-
reduction = 8:
- 当
reduction
参数设置为 8 时,模型会使用 3 个UpsamplingLayer
,每个层的作用是将特征图的空间尺寸扩大两倍。 - 例如,如果输入特征图的尺寸是
H x W
,经过 3 个上采样层后,输出的尺寸会是8H x 8W
。 - 最后,通过一个
Conv2d
层将通道数缩小到 1,生成最终的密度图。
- 当
-
reduction = 16:
- 当
reduction
参数设置为 16 时,模型会使用 4 个UpsamplingLayer
,每个层同样将特征图的空间尺寸扩大两倍。 - 输入特征图经过 4 个上采样层后,输出的尺寸会是
16H x 16W
。 - 同样,最后通过一个
Conv2d
层将通道数缩小到 1。
- 当
总结
reduction
参数控制了上采样的层数,进而影响了输出特征图的分辨率。对于 reduction=8
,最终的输出比输入分辨率高 8 倍;对于 reduction=16
,最终输出比输入分辨率高 16 倍。这个参数允许你根据任务的需求调节模型的细节和计算复杂度。