【扒代码】reduction参数是什么

model = DensityMapRegressor(in_channels=256, reduction=8)

reduction 参数在 DensityMapRegressor 类中用于决定模型在上采样过程中的层级配置。具体来说,它决定了上采样过程中使用多少个 UpsamplingLayer,从而影响输出的分辨率。

reduction 参数的作用

reduction 参数有两个主要的配置:8 和 16。这两个值决定了模型中 UpsamplingLayer 的层数和最终输出的分辨率。更具体地说:

  1. reduction = 8:

    • reduction 参数设置为 8 时,模型会使用 3 个 UpsamplingLayer,每个层的作用是将特征图的空间尺寸扩大两倍。
    • 例如,如果输入特征图的尺寸是 H x W,经过 3 个上采样层后,输出的尺寸会是 8H x 8W
    • 最后,通过一个 Conv2d 层将通道数缩小到 1,生成最终的密度图。
  2. reduction = 16:

    • reduction 参数设置为 16 时,模型会使用 4 个 UpsamplingLayer,每个层同样将特征图的空间尺寸扩大两倍。
    • 输入特征图经过 4 个上采样层后,输出的尺寸会是 16H x 16W
    • 同样,最后通过一个 Conv2d 层将通道数缩小到 1。

总结

reduction 参数控制了上采样的层数,进而影响了输出特征图的分辨率。对于 reduction=8,最终的输出比输入分辨率高 8 倍;对于 reduction=16,最终输出比输入分辨率高 16 倍。这个参数允许你根据任务的需求调节模型的细节和计算复杂度。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值