LSTM模型进行天气预测Pytorch版本

LSTM模型进行天气预测Pytorch版本


1-参考网址


2-动手实践

1-创建Pytorch环境

# 1-Anacanda使用Python3.9
conda create -n LSTM3.9 python=3.9
conda activate LSTM3.9


# 2-使用cudatoolkit=11.8
conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia
conda install pytorch torchvision torchaudio cudatoolkit=11.8 -c pytorch

# 3-安装所需依赖包
pip install matplotlib 

# 4-查看GPU使用命令
nvidia-smi
watch -n 1 nvidia-smi


2-执行LSTM脚本

import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader

# 设置随机种子以确保结果可重复
torch.manual_seed(42)

# 示例:加载和预处理 Jena Climate 数据集(假设数据已加载到一个 NumPy 数组中)
# 在实际应用中,你需要根据实际情况加载和处理数据
data = np.random.rand(1000, 14)  # 假设有 1000 个时间点,14 个特征

# 数据归一化
data_mean = data.mean(axis=0)
data_std = data.std(axis=0)
data = (data - data_mean) / data_std


# 定义时间序列数据集
class TimeSeriesDataset(Dataset):
    def __init__(self, data, seq_length):
        self.data = data
        self.seq_length = seq_length

    def __len__(self):
        return len(self.data) - self.seq_length

    def __getitem__(self, idx):
        x = self.data[idx:idx + self.seq_length, :-1]  # 输入特征:除最后一个特征外的所有特征
        y = self.data[idx + self.seq_length, -1]  # 目标:最后一个特征作为预测目标
        return torch.tensor(x, dtype=torch.float32), torch.tensor(y, dtype=torch.float32)


seq_length = 24  # 序列长度,例如过去 24 个小时的数据
dataset = TimeSeriesDataset(data, seq_length)
train_size = int(0.8 * len(dataset))
test_size = len(dataset) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(dataset, [train_size, test_size])

train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=32, shuffle=False)


# 定义 LSTM 模型
class LSTMModel(nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super(LSTMModel, self).__init__()
        self.lstm = nn.LSTM(input_size, hidden_size, batch_first=True)
        self.fc = nn.Linear(hidden_size, output_size)

    def forward(self, x):
        out, _ = self.lstm(x)
        out = self.fc(out[:, -1, :])  # 使用最后一个时间步的输出进行预测
        return out


input_size = data.shape[1] - 1  # 输入特征数
hidden_size = 64  # 隐藏层单元数
output_size = 1  # 输出特征数(预测目标)
model = LSTMModel(input_size, hidden_size, output_size)

# 定义损失函数和优化器
criterion = nn.MSELoss()
optimizer = optim.SGD(model.parameters(), lr=0.01)

# 训练模型
num_epochs = 10
for epoch in range(num_epochs):
    model.train()
    train_loss = 0
    for x_batch, y_batch in train_loader:
        optimizer.zero_grad()
        outputs = model(x_batch)
        loss = criterion(outputs, y_batch.unsqueeze(1))
        loss.backward()
        optimizer.step()
        train_loss += loss.item() * x_batch.size(0)
    train_loss = train_loss / len(train_loader.dataset)

    model.eval()
    test_loss = 0
    with torch.no_grad():
        for x_batch, y_batch in test_loader:
            outputs = model(x_batch)
            loss = criterion(outputs, y_batch.unsqueeze(1))
            test_loss += loss.item() * x_batch.size(0)
    test_loss = test_loss / len(test_loader.dataset)

    print(f'Epoch {epoch + 1}/{num_epochs}, Train Loss: {train_loss:.4f}, Test Loss: {test_loss:.4f}')

# 预测
model.eval()
with torch.no_grad():
    test_inputs = data[-seq_length:, :-1].astype(np.float32)
    test_inputs = torch.tensor(test_inputs).unsqueeze(0)
    predicted = model(test_inputs)
    predicted = predicted.item() * data_std[-1] + data_mean[-1]  # 反归一化

# 打印预测结果
print(f'Predicted value: {predicted:.4f}')

# 可视化结果(示例)
plt.figure(figsize=(10, 6))
plt.plot(data[-100:, -1] * data_std[-1] + data_mean[-1], label='True Values')
plt.plot(len(data) - 1, predicted, 'ro', label='Predicted Value')
plt.xlabel('Time')
plt.ylabel('Temperature')
plt.title('Temperature Prediction')
plt.legend()
plt.show()

### 使用LSTM实现天气预测的方法 #### 数据准备 为了使用LSTM进行天气预测,首先需要准备好历史天气数据。这些数据通常可以从气象站获取,并保存在一个CSV文件中,例如`temperature_data.csv`[^3]。 ```python import pandas as pd from sklearn.preprocessing import MinMaxScaler # 加载并预处理数据 data = pd.read_csv('temperature_data.csv') scaler = MinMaxScaler(feature_range=(0, 1)) scaled_data = scaler.fit_transform(data[['Temperature']]) ``` #### 构建LSTM模型 接下来,在R或Python环境中利用Keras库构建LSTM神经网络模型。这里展示的是Python环境下的代码: ```python from tensorflow.keras.models import Sequential from tensorflow.keras.layers import LSTM, Dense, Dropout def build_model(input_shape): model = Sequential() # 添加LSTM层 model.add(LSTM(units=50, return_sequences=True, input_shape=input_shape)) model.add(Dropout(0.2)) # 防止过拟合 model.add(LSTM(units=50, return_sequences=False)) model.add(Dropout(0.2)) # 输出层 model.add(Dense(units=1)) # 编译模型 model.compile(optimizer='adam', loss='mean_squared_error') return model ``` #### 训练模型 创建好模型之后,就可以用历史温度数据对其进行训练了。需要注意设置合适的时间步长(`time_steps`)以便让模型能够捕捉到足够的上下文信息来进行有效的预测。 ```python X_train, y_train = [], [] for i in range(time_steps, len(scaled_data)): X_train.append(scaled_data[i-time_steps:i]) y_train.append(scaled_data[i]) X_train, y_train = np.array(X_train), np.array(y_train) model = build_model((X_train.shape[1], 1)) history = model.fit(X_train, y_train, epochs=20, batch_size=32) ``` #### 测试与验证 完成训练过程后,可以使用测试集的数据来检验模型的表现。这一步骤通过循环遍历缩放后的测试数据中的每一个元素,并调用已训练好的LSTM模型的`predict()`函数得到相应的预测值[^2]。 ```python predictions = [] current_batch = scaled_test[:time_steps].reshape((1, time_steps, 1)) for _ in range(len(test_data)-time_steps): pred = model.predict(current_batch)[0] predictions.append(pred) current_batch = np.append(current_batch[:,1:,:],[[pred]],axis=1) actual_values = scaler.inverse_transform(predictions).flatten() predicted_values = test_data['Temperature'].values.flatten() print(f'Actual Values:\n{actual_values}') print(f'\nPredicted Values:\n{predicted_values}') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值