文档控制-修改记录
编号 | 章节名称 | 说明 | 修订人 | 修订日期 | 版本号 | 审核人 | 发布日期 |
1 | 全文 | 新建 | 毛雪东 | 2024-11-10 | V.0.0 | ||
2 | 画像应用 | 新增 | 毛雪东 | 2024-11-11 | |||
3 | 规则引擎 | 新增 | 毛雪东 | 2024-11-14 | |||
4 | |||||||
5 | |||||||
6 | |||||||
1、需求分析
1.1背景说明
在互联网逐步步入大数据时代后,不可避免的给企业和用户行为带来一系列改变与重塑;其中最大的变化莫过于,用户的一切行为在企业面前是“可视化”的,随着大数据技术的深入研究与应用,企业的专注点日益聚焦于怎样利用大数据来为精细化运营及精准营销服务,进而深入挖掘潜在的商业价值,于是,用户画像的概念也就应运而生.
用户画像可以使产品的服务对象更加聚焦,更加的专注,基于用户实体特征,构建标签体系,实现模型与应用场景数据共享,采用千人千面等方法进行UI数据可视化展现,实现精细化运营及精确推荐服务。
1.2产品定位
标签画像系统是一套可视化、自动化设计和开发标签的工具系统。业务和技术人员基于系统可以快速定义出一个有意义的标签,通过自动化ETL工具快速、稳定和可监控的生产标签数据。基于标签数据提供标签即席查询功能,用户可灵活组合条件查询出特定实体群里。另外支持第三方应用可按需获取标签实体数据需求。
在全业务运营下,用户画像及应用基于PG(关系型数据库)和大数据平台采集分析,把用户特征标签封装成数据接口服务,实时触达用户,使信息数据变成生产力,实现目标如下:
用户画像模型封装
(1) 基于PG(关系型数据库)和大数据平台,包含基础标签、统计类标签、预测标签类,实现用户特征全貌刻画。
(2) 多种封装角度
分用患者画像、医生画像、机构画像、群体画像等,按照业务场景进行封装配。
接口数据实时推送
实现用户画像数据实时更新至运营及营销统一视图中进行展现,并实时反馈运营及营销信息问题,保证数据应用的时效性.
展现UI封装
依托用户画像,将推荐信息配置应用端进行可视化展现,即依据推荐引擎,实现精细化运营、个性化推荐
1.3适用范围
- 管理决策人员:对医疗的关健问题进行决策.
- 需求分析人员:从事用户需求分析、业务分析工作,主要负责用户需求的发现和目标确定,并配合医疗运营策划和评估的实施.
- 运营策划人员:从事运营和实施方案设计,根据用户需求生成策略,并制订实施方案.
- 数据分析人员:负责数据挖掘和数据分析支撑的全体IT支撑人员.
- 其他开发人员
1.4 功能结构

2、标签管理
2.1 功能设计
标签管理、调度系统和标签仓库组成“设计”、“生产”和“仓储”标签设计加工存储流程;然后基于标签仓库,通过调度系统和API接口对外提供数据服务;其中标签汇聚库是针对具体实体的全部标签的聚合,个性化推荐、营销运营和BI分析系统作为下游系统消费标签仓库。
2.2 标签管理
标签管理涉及标签的设计与定义过程,其中用户可新增标签,这包括为标签设定属性和制定规则。同时,系统也支持标签的删除功能,即下架标签,并在下架时清除标签数据仓库中对应的数据。标签管理主要分为以下几个关键部分:数据源管理、标签的日常维护与更新、宽表(一种数据组织方式)的管理,以及标签操作日志的记录。
借助标签管理系统,用户不仅能设计、加工标签,还能生成并调用标签服务。该系统提供了基础标签、规则标签和模型标签这三层级的标签管理模块。其中,规则标签和模型标签是在基础标签的基础上,通过二次加工生成的衍生标签。依托于这一标签体系,我们可以进行个人画像和群体画像的深入分析,从而精准地洞察分析对象的健康特征
2.2.1 数据源管理
对生成标签所依赖的数据源进行管理,可对数据源进行新增、删除、编辑等操作,亦可对每一条数据源的信息进行添加、删除操作。

2.2.2 标签维护
对不同主题下的标签的名称、说明、规则表达、状态进行维护。

2.2.3 宽表管理
针对不同实体标签进行维护,可根据标签进行数据预览,以及对字段信息进行添加、删除。

标签数据预览:

标签新增或删除:

2.2.4 标签日志
标签日志记录每一个标签编辑内容、操作时间以及操作人。

2.3 标签实体
标签实体包含标签属性和标签规则两部分,其中标签属性包括标签名称、标签代码、标签分类、标签实体和标签说明;标签规则部分包括数据源选择、计算逻辑(脚本[python|sql])、调度配置信息。
2.3.1 实体类别
基于医疗诊疗行为数据、非诊疗行为数据,可分为患者、医生、药品、疾病、检查、检验等实体域。

2.3.2标签属性
字段名 | 字段代码 | 数据类型 | 说明 |
标签名称 | lb_name | varchar(64) | 标签中文说明 |
标签代码 | lb_code | varchar(64) | 标签英文代码,分类+实体+自定义部分组合 |
标签分类 | lb_class | varchar(64) | 标签三级分类代码 |
标签实体 | lb_entity | varchar(64) | 标签所属的实体的代码 |
标签类型 | lb_type | varchar(64) | 标签类型,如统计类,挖掘类 |
数据类型 | data_type | varchar(4) | 数据类型,string、boolean、integer、double、date、pro(概率类型) |
标签状态 | lbl_status | int | 0-待创建,1-已创建 |
标签说明 | lb_note | varchar(64) | 标签业务说明,包含计算口径逻辑描述 |
2.3.3 标签规则
标签规则配置需满足如下三种方式进行配置:
(1)可视化配置辅助生成sql或python脚本
(2)非结构化数据调NLP接口
(3)调度流程可视化配置
2.4 标签开发
标签开发从标签类型分主要有症状、疾病、检验、检查、药品、耗材、治疗、手术、医院、医生、科室、人体、人群、区域、医学指标、病原、基因等,从行为分主要有挂号、问诊、就诊、关注、浏览、搜索、注册社区、关联、发回帖互动九类。
2.4.1居民标签
2.4.1.1面向医师的标签
患者健康记录、诊治历史、诊疗关键节点预测标签
2.4.1.2面向疾病管理的标签
患者慢病标签、传染病标签、层发生的症候群标签、健康状况恶化程度标签、预后情况标签、远期情况预测标签
2.4.1.3面向社会保障中医保养老及商保的标签
疾病负担标签、罹患主体疾病标签、疾病致残或至劳动力损失标签、劳动力占用标签、大病标签、疾病关联风险标签
2.4.1.4面向医疗研发的标签
效果标签、毒性标签、可及性标签、依从性标签、经济性标签
2.4.1.5面向医疗机构运营的标签
医院指标标签、用户关注标签、用户选择倾向标签、用户价格敏感与否标签、用户满意度标签
2.4.2疾病标签
2.4.2.1疾病流行病学标签
时间分布、空间分布、人群分布标签
2.4.2.2疾病早期症状标签
早期关键主诉、体征、症状标签
2.4.2.3疾病临床表现标签
疾病主诉、体征、症状检验检查结果标签
2.4.2.4疾病诊治方案标签
用药、治疗、手术等标签
2.4.2.5疾病治疗效果预后标签
2.4.2.6疾病远期并发症标签
2.4.2.7疾病不同期别危重程度标签
2.4.3医生标签
2.4.3.1医师基础信息标签
2.4.3.2医师擅长标签
2.4.3.3医师经济性标签
2.4.3.4医师指标标签
2.4.3.5医师可及性标签
2.4.4机构标签
2.4.4.1机构基础信息标签
2.4.4.2机构擅长标签
2.4.4.3机构经济性标签
2.4.4.4机构指标标签
2.4.4.5机构可及性标签
2.4.5区域标签
2.4.5.1区域人群发病标签
2.4.5.2区域疾病流行状标标签
2.4.5.3区域长期疾病风险压力标签
2.4.5.4区域人群健康状况评估标签
2.5 标签工厂
标签工厂主要作用是生产和存储标签数据,包括数据源、调度系统、NLP和目标数仓。
当标签管理系统创建好标签属性和规则后,标签工厂的调度系统按照设计好的抽取规则从数据源抽取、转换和插入到目标数仓中,若数据源为非结构化数据,需要调NLP接口实现分词后再转换和插入到目标数仓中。
NLP主要支持分词作用,针对非结构化数据,调用NLP接口实现分词,然后通过python脚本实现数据逻辑计算,再插入到目标数仓。
目标数仓是根据业务域和业务实体设计的标签数据仓库,实施时根据不同的行业和场景设计数仓模型。
单字段-标签
单字段-计算-标签
多字段-计算-标签
多数据源-计算-标签
模型计算-标签
2.6 标签汇聚
为了分析和查询方便,需要根据不同实体,将标签数据做汇聚处理。包括汇聚存储库和汇聚ETL功能。标签聚合库以具体实体为单位,将此实体的所有标签数据聚合在一个大json中,该聚合库能友好支持标签检索需求。
2.7 标签字典
标签字典用于记录标签权重方案、标签配置明细、时间衰减系数、标签清单等信息。
xxx标签数据字典 | |||||
序号 | 表名 | 表注释 | 表类型 | 操作人 | 操作时间 |
1 | weight_plan_config | 权重方案配置表 | 行为表 | admin | 2024-11-11 |
2 | weight_plan_detail | 权重配置明细表 | 当前表 | admin | 2024-11-11 |
3 | time_reduce_index_detail | 时间衰减系数表 | 当前表 | admin | 2024-11-11 |
4 | tag_relation_portrait | 标签清单表 | 行为表 | admin | 2024-11-11 |
5 | user_medical_tag_info | 标签信息表 | 当前表 | admin | 2024-11-11 |
6 | user_act_info | 行为类型表 | 当前表 | admin | 2024-11-11 |
7 | user_info | 用户信息表 | 当前表 | admin | 2024-11-11 |
2.8 标签权重
标签权重是用于衡量用户对特定标签的偏好程度的一种数值表示。主要目的是根据标签的重要性和相关性,分配不同的权重,以便在搜索、推荐、综合评估时,能够准确地反映用户的需求和内容价值。通过合理的标签权重设置,可以提高精细化运营目的,优化用户体验。
ID | 行为类别 | 直接/间接 | 权重配置 |
1 | 病历书写行为 | 直接 | 0.1 |
2 | 诊断行为 | 间接 | 0.25 |
3 | 用药行为 | 间接 | 0.25 |
4 | 检验行为 | 直接 | 0.1 |
5 | 检查行为 | 直接 | 0.1 |
....... | ....... | ....... | ....... |
2.9 标签生命周期
每个标签都具有生命周期,时间衰减是指用户的行为会随着时间的过去,历史行为和当前的相关性不断的减弱,其相关系数呈现指数型衰减,即 f(t)是随着时间t的增长而衰减,其原来行为信息衰减为:
a为衰减常数,通过回归可计算得出。如:指定30天前的行为信息和当前的相关度为0.5,即
,求得
。行为信息衰减函数曲线为:

2.9 标签模型
依据不同实体的标签、标签权重、标签时间衰减系数、用户标签与行为标签、标签字典等形成标签逻辑模型,为标签画像的形成数字化依据。
2.10 标签分析
标签画像支持组群画像即席查询功能,用户可灵活组合查询条件进行实体查询,针对查询出的单条结果,可下钻看其具体画像。标签分析含有标签集市、患者分群、群体画像、患者检索、医生检索、机构检索等功能。
2.10.1 标签集市
标签集市汇聚着不同实体的标签明细,可根据实体名称、标签名称进行搜索,查看每一个标签的解释说明。
2.10.2 患者分群
根据患者标签,对患者进行分群,也可查看每一个患者标签的含义、标签的所属类别。
2.10.3 群体画像
由单一标签进行组合,形成组合标签,进而形成群体画像,如:医生群体画像、机构群体画像、患者群体画像。
2.10.4 患者检索
根据患者的姓名、身份证号、标签进行检索,获取该患者标签信息。
2.10.5 医生检索
可根据医生的姓名或医生标签进行检索,获取医生的标签信息;默认展示医生经常关注的疾病以及热门标签。
2.10.6 机构检索
根据机构标签或者机构名称进行检索,查看该标签下所有机构的属性信息。
2.11标签服务
标签数据同步是打通标签数据和业务系统之间的通路,将标签数据同步到业务系统中去,支持ETL和RESTFUL API两种方式。可支持个性化推荐、营销运营、BI分析等系统。
ETL模式下,实施时以标签仓库或标签聚合库为数据源,通过调度系统按业务方需求将标签数据同步到业务系统指定的目标数据库中。
API模式下,业务系统即席调用API接口,查询标签数仓或标签聚合库获得查询出的数据.
3、画像体系
3.1患者画像
患者健康画像为每位患者精准匹配相应的健康标签,这些标签涵盖了患者的基本信息、生活习惯、疾病历史等多个方面,通过对标签及其权重的综合分析,我们能够绘制出居民的健康画像。
为了满足不同健康管理和分析的需求,患者健康画像系统应具备以下功能:首先,系统应提供全生命周期的健康视图,清晰展现居民从婴幼儿到老年的健康状况变化;其次,系统应支持便捷的信息查询功能,让用户能够轻松获取所需的健康信息;再次,系统应具备疾病画像功能,通过分病种统计和分类展示,帮助用户深入了解各种疾病的分布和特征;此外,系统还应具备风险预测与提示功能,基于大数据分析和标签权重,预测居民未来可能面临的健康风险,并及时给出预警;最后,标签云统计功能也是必不可少的,它能够直观地展示各个标签在居民健康画像中的权重和分布情况。
3.2 医生画像
医生画像是整合医生个人信息、专业能力和临床经验等数据的可视化展示。通过区域医疗信息平台,可以为每位医生生成个性化的画像,展示其专业背景、临床经验、能力薄弱项等方面的信息。这些画像不仅有助于用户更直观地了解医生的能力,还可以为医疗机构在招聘、晋升等方面提供参考。
3.3 群体画像
群体画像是对某一类特定群体的统计特征、行为模式等多方面特征的综合性描述和概括。通常基于对该群体中大量个体的数据收集和分析,通过统计和归纳等方法,提炼出该群体的共同特征或趋势,可以分为某区域患者群体画像、某区域下医生群体画像。群体画像可为不同的群体进行个性化推荐、社区运营分析、策略分析。
3.4 机构画像
以基层医疗机构为核心,我们致力于推动基层医疗服务的高质量发展,通过深度整合机构的基本信息、资源信息、诊疗信息等多元数据源,构建了一个全面且精细的360度基层医疗机构画像。该画像综合展示了基层医疗机构的服务规模(如服务覆盖范围、接诊量、医护人员配置)、服务效率(如诊疗流程优化、患者等待时间、就诊满意度)、医疗质量(如诊疗质量、患者康复情况、医疗事故率)、资产运行状况(如财务状况、设备利用率、药品库存管理)、资源配置合理性(基于人口分布、疾病谱变化、医疗资源需求预测的科学配置)、数据质量保障(确保数据的准确性、完整性、及时性)以及分类统计结果(针对不同疾病类型、患者群体的精准数据洞察)。这一综合画像不仅为基层医疗机构提供了全面、量化的运营状况和服务效能评估,还为其科学决策、资源优化、服务提升提供了有力支持,有力推动了基层医疗服务的高质量发展。
3.5 区域画像
在一个医疗区域中,区域画像是指一种基于人口学、社会经济以及医疗消费行为等多种因素,对该区域内的患者、医生、机构进行画像和分析。涵盖区域内患者特征(如年龄、性别、职业、收入水平等、健康状况、就医习惯)、医生特征(医生数量、医生分布、医生职称)、机构特征(机构特色、机构规模)、医疗资源利用情况等多方面的数据,旨在帮助医疗机构、政府部门和公共卫生机构等更好地认识和了解该区域内的人口结构特征、医疗需求、健康风险等方面的特点,
可以更加精准地制定医疗政策、优化医疗资源配置、提高医疗服务质量,从而满足区域内人群的健康需求,促进医疗服务的可持续发展。
4、画像应用
4.1 人群分析
根据现有的用户标签,我们可以有效地圈定用户人群,并通过多个维度(如年龄、性别、区域、医疗行为等)来深入分析该批次用户群的具体特征。这些维度为我们提供了全面的视角,使我们能够更深入地理解用户群体的需求和偏好。同时也可以对标签进行组合,进行多维透视分析;如:将“慢病患者”与“性别”,可观察不同性别的慢性病患者在产品和服务上的交叉需求。或者将区域和医疗行为标签组合,分析不同地区用户的医疗服务需求和习惯差异。这种多维度的透视分析有助于我们发现特定的人群特征,为他们提供更加精准和个性化的服务支持。
4.2 推荐服务
在医疗健康领域,用户的需求主要包括疾病诊断、治疗方案、医学知识等方面;基于用户的就诊记录、医学文献阅读记录、医疗社交网络等行为数据进行分析和学习,并结合画像服务,进行个性化知识推荐,为其推荐符合他们专业领域、研究兴趣、临床经验以及他们所关注的疾病类型等知识。
4.2.1基于内容标签推荐
4.2.1.1疾病与治疗匹配
详细分析医生画像中的专业科室和擅长治疗的疾病领域。例如,若医生是心血管内科专家,擅长冠心病和心律失常的治疗,就优先推送与冠心病和心律失常诊断、治疗最新技术(如新型药物洗脱支架在冠心病中的应用、心律失常的导管消融新技术)相关的知识内容。
对于在妇产科工作,专注于产科方向的医生,可以推送关于孕期并发症最新处理方法、分娩镇痛新技术等方面的知识。这些内容紧密围绕医生日常工作中的疾病治疗核心,精准满足他们在专业知识上的需求。
4.2.1.2 专业技能提升匹配
根据医生的职称和临床经验,推荐有助于提升专业技能的知识。对于住院医师,重点推送基本临床操作规范(如无菌操作技术新指南、体格检查技巧更新)、常见疾病的标准化诊疗流程等基础但关键的知识。
对于主任医师等资深医生,推荐复杂病例的多学科会诊经验分享、最新的医疗质量控制标准和管理策略等内容,以满足他们在提升综合专业素养和管理能力方面的需求。
4.2.1.3 医学资源类型匹配
依据医生在用户画像中体现的偏好,选择合适的知识载体。如果医生经常阅读学术论文,就推送所在领域的高质量论文;要是医生喜欢通过视频学习,就推荐医学培训视频、手术演示视频或者专家讲座视频。
4.2.1.4 治疗手段偏好推荐
对于擅长手术治疗的外科医生,推送与其专业手术相关的知识。比如,针对一名擅长腹腔镜手术的普外科医生,推荐腹腔镜下肝脏切除术的操作技巧改进、手术并发症的预防和处理方法、最新的腹腔镜设备介绍等内容。对于偏向保守治疗的医生,则提供药物治疗的新策略、非侵入性治疗技术的发展动态。
4.2.2 基于协同过滤推荐
4.2.2.1基于同行医生的协同推荐
寻找与目标医生具有相似画像的同行群体。相似性可以从多个方面衡量,如相同科室、相近职称、相似的科研兴趣或临床专长等。例如,对于一位年轻的皮肤科医生,重点关注痤疮治疗和激光美容技术,就可以找到其他同样年轻、在皮肤科且对这两个领域有研究的医生群体。
分析这个同行群体所关注和使用的知识资源。如果这些相似医生经常阅读关于新型痤疮药物临床试验的论文或者参加激光美容技术培训课程,那么将这些资源推荐给目标医生。这种基于同行行为的推荐,利用了群体智慧,能够发现一些医生可能还未关注但在同行中很有价值的知识。
4.2.2.2基于专家-新手医生的协同推荐
根据医学领域的专家-新手关系构建推荐模型。对于新手医生,可以根据专家医生的知识使用习惯来推荐知识。例如,医学专家通常会关注本领域的经典文献、最新的诊疗指南更新以及具有开创性的研究成果。
将这些专家关注的知识推荐给新手医生,帮助他们快速建立扎实的专业知识体系。同时,也可以收集新手医生的反馈,了解他们在知识吸收过程中的困难和需求,进一步优化推荐策略。
4.2.2.3跨科室协同推荐
考虑不同科室之间的知识关联,有些疾病的治疗需要多科室协作,对于在这种协作中起关键作用的医生,推荐跨科室的关联知识。例如,对于内分泌科医生,在遇到糖尿病足患者时,可能需要与血管外科、创伤骨科等科室合作,此时可以为其推荐血管外科关于下肢血管病变的诊断和治疗知识、创伤骨科对糖尿病足溃疡清创和修复的方法等。
4.2.3 情境感知推荐
4.2.3.1临床工作情境推荐
- 门诊情境
在医生出诊期间,根据当天的门诊患者预约信息和常见疾病分布,推荐相关的诊断要点、鉴别诊断方法和最新的治疗方案。例如,如果当天有较多糖尿病患者预约门诊,就推送 “2024 年糖尿病诊断新标准及口服降糖药的合理应用”。同时,对于一些复杂或罕见病例的患者预约,推送相似病例的诊疗经验和专家会诊建议。
- 病房情境
针对病房患者的主要病情和治疗进展,推送相应的知识。比如,对于术后患者,推送术后并发症的早期识别和处理方法、康复计划调整等知识,使医生能够及时获取与工作场景紧密相关的知识。
4.2.3.2科研工作场景推荐
当医生处于科研项目的实验设计阶段,推荐科研方法学知识,如实验设计的统计学方法、样本量计算方法、研究伦理相关内容等。
在科研成果发表阶段,为医生提供适合其研究成果的期刊选择建议、论文写作技巧(如如何撰写高质量的讨论部分、如何回应审稿人意见)等知识。
4.2.3.3继续教育和培训场景推荐
根据医生的职称晋升需求和继续教育学分要求,推荐合适的培训课程。例如,对于需要晋升副主任医师的医生,推荐与职称考试相关的培训课程、专业技能提升课程(如高级内镜操作技术培训)等内容。
结合当地或全国性的医学继续教育活动安排,推荐符合医生专业和兴趣的学术讲座、研讨会等活动信息,方便医生参加线下或线上的继续教育。
4.2.4基于时间序列推荐
知识更新频率匹配
根据医生对知识更新的需求频率来推荐。对于紧跟学术前沿、希望第一时间获取新知识的医生,设置高频次的知识推送,如每天推送最新的医学研究成果摘要。而对于那些更注重知识积累和深度理解,对更新速度要求不高的医生,可以适当降低推送频率,如每周推送一篇深度综述性文章。
职业生涯阶段适配
考虑医生在不同职业生涯阶段的时间分配和知识需求重点。对于刚入职的年轻医生,在入职初期集中推荐住院医师规范化培训相关知识,如基本操作技能培训课程、病历书写规范等;随着工作经验的增加,逐渐推荐与专业晋升相关的知识,如科研项目申报、学术论文写作等。对于临近退休的医生,如果他们还在临床一线工作,推荐一些能够帮助他们轻松应对临床工作的知识,如简化工作流程的工具、老年人常见疾病的最新治疗观念等
4.2.5 实时资讯更新
及时向订阅了特定主题的医生发送最新研究成果、行业动态等信息。
时间敏感推荐
结合医生工作中的时间周期特点。例如,在疾病高发季节(如流感季节),推荐关于流感诊断和治疗的最新知识给相关科室(如呼吸内科、急诊科)的医生。或者在医学考试、职称评审等时期,推荐复习资料和相关政策解读。
4.3 运营分析
4.3.1 用户行为分析
4.3.1.1 临床行为分析
4.3.1.1.1病例类型与处理方式
从医生画像中获取医生所在科室和擅长疾病领域的数据。例如,对于心血管内科医生,分析他们处理冠心病、心律失常等常见病例的方式。如果发现某一地区的医生在处理急性心肌梗死时,更倾向于采用介入治疗而非溶栓治疗,运营团队可以针对这一偏好,为该地区提供更多关于介入治疗新技术、新器械的培训课程或产品信息。
4.3.1.1.2处方习惯分析
分析医生的处方习惯,了解医生的用药偏好和处方行为,为药品推广和合理用药提供参考。
4.3.1.1.3线上行为分析
分析医生在业务系统等各个平台的活跃度,以及各个功能组件的使用频率,了解医生的线上行为特征,为线上系统功能优化提供策略支持。
4.3.1.1.4病例类型与处理方式
综合各医疗机构的数据,了解医生的诊疗时间和效率。比如,分析外科医生完成一台常规手术的平均时间,以及门诊医生接待单个患者的平均时长。如果某些医生的诊疗效率较低,运营团队可以提供时间管理工具推荐或优化诊疗流程的培训。
4.3.1.2 学习行为分析
4.3.1.2.1学习频率与深度需求
观察医生对新知识的学习频率和对知识深度的要求。如果一个科室的医生频繁搜索某一疾病领域的最新研究,如肿瘤科医生对免疫治疗的最新进展关注度很高,这表明他们对该领域知识深度有需求。运营团队可以组织专家讲座或深度研讨会,提供更深入的知识内容。
4.3.1.2.2知识渠道信任度偏好
通过医生画像中的对知识渠道的点击习惯、查看记录等,确定医生获取知识的主要渠道。例如,发现年轻医生对各个渠道的知识并没有偏好,而资深医生更信赖专业医学杂志、权威性的知识。运营团队可以根据这一差异,调整知识传播策略。对于年轻医生,注重内容更新和互动功能;对于资深医生,与知名医学杂志合作进行联合推广。
4.3.1.3 社交行为分析
4.3.1.3.1跨科室交流倾向
分析医生与其他科室医生的交流情况。如果发现内科和外科医生在某些复杂疾病(如胃肠道肿瘤的综合治疗)上交流频繁,运营团队可以策划跨科室的联合学术活动,促进知识融合,同时也为相关医疗产品或服务的跨科室推广提供机会。
4.3.1.3.2同行交流活跃度
利用医生画像中的社交数据,如参与会诊的频次、学术活动的次数,衡量医生的同行交流活跃度。例如,某些地区或科室的医生在医学论坛上非常活跃,经常分享病例和治疗经验。运营团队可以针对这些活跃群体,组织线上线下的病例讨论活动,或者设立奖励机制,鼓励他们持续分享。
4.3.2 需求挖掘与产品服务优化
4.3.2.1临床需求挖掘
4.3.2.1.1患者管理需求
分析医生在患者管理方面的需求,如患者教育材料、远程医疗工具等。在基层,医生对于慢病患者管理较难,需要方便易懂的患者教育手册来帮助患者理解疾病管理知识,运营团队可以制作并提供此类材料。
4.3.2.1.2 疾病治疗需求
根据医生画像中的临床专长,挖掘他们在疾病治疗过程中的潜在需求。例如,对于从事传染病防治的医生,随着新的传染病出现,他们可能需要更快速准确的诊断试剂和有效的治疗药物。运营团队可以与医药企业合作,及时向这些医生介绍符合需求的新产品。
4.3.2.2 知识提升需求匹配
4.3.2.2.1 专业知识更新
通过医生画像了解医生对专业知识更新的需求,比如他们对最新临床指南、学术研究成果的需求。运营团队可以建立及时推送机制,确保医生第一时间获取相关知识。例如,当心脏病学领域发布新的治疗指南时,将指南要点解读和全文链接推送给心血管内科医生。
4.3.2.2.1 跨学科知识需求
考虑到医学领域的交叉融合趋势,分析医生对跨学科知识的需求。如对于从事康复治疗的医生,他们可能需要了解骨科、神经科等相关学科的知识,以更好地制定康复方案。运营团队可以推荐跨学科的培训课程或学术资源。
4.3.2.3 产品服务反馈分析
4.3.2.3.1知识产品优化
如果发现医生对某一领域的知识内容需求强烈但现有资源不足,运营者可以增加这方面的内容创作或引进。例如,针对医生对罕见病诊断知识的需求,组织专家编写罕见病诊断指南,或者购买相关版权的高质量课程,丰富知识产品体系。
4.3.2.3.2工具服务优化
对于医生经常使用的工具型服务(如医学文献检索工具、病例管理软件等),根据需求反馈进行优化。如果医生反馈检索工具的检索结果不够精准,就可以改进算法,提高检索精准度;如果病例管理软件的界面不够友好,就可以进行用户界面(UI)和用户体验(UX)设计优化。
4.3.2.3.3服务满意度评价
分析医生对各个业务系统功能的满意度评价。如果发现医生某个功能点满意度较低,原因是业务功能流程不符合医生实际操作习惯,运营团队可以反馈功能产品经理出,使其更符合医生的工作节奏和知识需求。
4.3.3 市场细分与个性化营销
4.3.3.1市场细分维度
4.3.3.1.1科室细分
根据医生画像中的科室信息,将市场细分为内科、外科、妇产科等不同科室市场。针对不同科室,制定不同的营销方案。例如,对于妇产科医生,可以重点推广母婴保健产品、妇产科手术器械和新技术培训课程;对于皮肤科医生,则可以侧重于皮肤美容产品和皮肤科疾病治疗新方法的营销。
4.3.3.1.2职称细分
按照医生的职称(住院医师、主治医师、副主任医师、主任医师)进行市场细分。住院医师可能对基础培训和职业发展指导更感兴趣,运营团队可以提供住院医师规范化培训课程推荐和职业晋升攻略;而主任医师可能更关注学术交流和科研合作机会,为他们提供高端学术会议邀请和科研项目对接服务。
4.3.3.2个性化营销手段
4.3.3.1.1内容营销定制
根据医生的兴趣和需求,定制个性化的营销内容。例如,为对人工智能在医学领域应用感兴趣的医生,制作一系列关于人工智能辅助诊断、治疗方案智能推荐等方面的专题文章、视频或白皮书,通过电子邮件、医学平台站内信等方式进行精准推送。
4.3.3.1.2活动营销匹配
结合医生画像,举办个性化的营销活动。比如,针对某一地区的年轻外科医生,举办 “青年外科医生手术技能竞赛”、“茶话会”,提供展示技能和交流经验的平台,同时在活动中推广适合年轻外科医生的医疗器械和培训服务。
4.3.4 用户价值评估与分层运营
4.3.4.1高价值用户层
针对高知识贡献和高影响力的医生,提供专属的高级服务,如一对一的学术咨询服务、优先参加国际学术交流活动的机会、定制化的内容推荐等。同时,鼓励他们继续发挥影响力,带动其他医生参与平台活动。
4.3.4.2成长型用户层
对于那些有潜力提升知识贡献和影响力的医生,如年轻的主治医师,提供针对性的培训和成长支持。例如,组织专业写作培训帮助他们提升论文发表质量,或者开展临床技能提升课程,让他们能够在专业领域更快地成长,同时也增加他们对平台的粘性。
4.3.4.3基础用户层
对于大多数普通医生用户,主要提供基本的、符合普遍需求的医学知识服务,如定期推送行业资讯、临床指南更新等。通过优化用户体验,如简化内容获取流程、提供多渠道的内容访问方式等,提高这部分用户的满意度和忠诚度。
5、规则引擎
5.1 架构设计
5.2 数据接入
建立接口,使规则引擎能够获取画像数据、内部知识图谱数据以及外部数据。这些数据可以存储在数据库、数据仓库或者其他数据存储系统中。确保数据的实时性或定期更新,以保证规则引擎基于最新的画像信息进行操作。
5.3 推荐规则
选择或设计一种规则定义语言,用于清晰、准确地表达规则。这种语言可以是简单的 SQL - like 语言、基于逻辑表达式的语言或者专门的规则脚本语言。例如,可以使用类似 “IF - THEN - ELSE” 的逻辑结构来定义规则,如 “IF 患者年龄 > 60 AND 患者患有糖尿病 THEN 推荐定期检查眼底和足部神经”。也可以根据画像的应用领域和业务流程对规则进行分类,如,对患者画像,可以分为治疗方案推荐规则、疾病风险预警规则、健康管理规则
5.3.1基于患者画像应用规则设计
5.3.1.1治疗方案推荐规则
根据患者的疾病诊断、病史、过敏史等信息来推荐治疗方案。
触发条件:“IF 患者诊断为肺炎 AND 患者无药物过敏史”
推荐规则: “THEN 推荐使用抗生素 [具体药物名称],并结合止咳化痰药物 [具体药物名称],同时建议休息和多喝水”。
考虑患者的年龄、身体状况等因素调整治疗方案。
触发条件:“IF 患者年龄> 70 AND 患有心脏病 AND 诊断为肺炎”
推荐规则:“THEN 在上述治疗方案基础上,增加心脏功能监测,并谨慎使用可能影响心脏功能的药物”。
如果患者画像中的疾病诊断为 “冠心病”,且患者年龄大于 60 岁,并且患者有高血压病史。则推荐包括药物治疗(如阿司匹林、他汀类药物)、心脏康复计划(如适度的有氧运动、心脏康复训练课程)以及定期的心脏检查(如心电图、心脏超声)的综合治疗方案。
5.3.1.2健康风险预警规则
如果患者有 “高血压家族史”,且 “体重指数(BMI)≥ 28”,并且 “吸烟史超过 10 年”。向患者发送 “高血压高风险预警” 信息,包括高血压的危害、预防措施(如戒烟、控制体重、减少盐摄入),并建议 “每月测量一次血压”,同时向患者的主治医生推送该风险预警信息
5.3.1.3健康管理原则
根据患者的生活习惯(如饮食、运动、吸烟等)和健康风险因素来提供健康管理建议。
触发条件:“IF患者身体质量指数(BMI)> 28 AND 患者很少运动”。
推荐规则:“THEN 反馈结果推荐每周至少进行 3 次有氧运动,每次 30 分钟以上,并控制饮食热量”。
对于患有慢性病的患者,制定长期健康管理计划。
触发条件:“IF 患者患有糖尿病 THEN 定期(每3个月)”。
推荐规则:“推荐检查糖化血红蛋白,根据血糖控制情况调整饮食和药物剂量,每年推荐进行一次糖尿病并发症筛查”。
5.3.2基于医生画像应用规则设计
5.3.2.1知识推送规则
根据医生浏览文献的行为,向其推荐相关治疗。
触发条件:如果医生画像显示医生的专业为 “心血管内科”,并且医生在过去一个月内有 “访问过心律失常相关文献” 的行为,同时有 “新的心律失常治疗指南发布”。
推荐规则:向医生推送新的心律失常治疗指南链接,附上 “该指南包含最新的心律失常治疗方法和案例” 的简短介绍。
5.3.2.2工作分配原则
根据医生的工作负荷,将患者推荐给工作负荷较低的医生。
触发条件:如果是 “周一至周五”,患者挂号的疾病类型为 “普通感冒”,并且有 “经验不足 3 年的内科医生” 空闲。
推荐规则:将患者分配给空闲的经验不足 3 年的内科医生,并在医生工作平台上推送患者基本信息和就诊需求。
5.3.2.3培训推荐规则
根据医生诊疗能力的薄弱项以及临床行为,推荐进行继续教育。
触发条件:如果医生画像显示医生在过去一年中参与科研项目的数量低于平均水平,且医生所在科室是 “肿瘤科”。
推荐规则:向该医生推荐肿瘤科研方法培训课程,包括线上课程(如肿瘤临床试验设计课程)和线下培训(如肿瘤基因检测技术培训),并发送培训通知到医生的工作邮箱。
5.3.3基于机构画像应用规则设计
5.3.3.1资源分配规则
根据设备的使用饱和度,评估是否引进新设备。
触发条件:如果医疗机构画像显示该机构是一家社区医院,且患者流量在过去一个季度持续增长,同时设备清单中有部分设备(如 X 光机)的使用率接近饱和。
推荐规则:根据预算和设备采购计划,推荐采购新的 X 光机或升级现有设备,并通知医院管理层进行设备采购审批流程。
5.3.3.2合作推荐规则
根据机构的属性及周边机构属性,评估合作意向。
触发条件:当机构画像表明卫生服务中心是一家综合性服务中心,且缺少某些专科服务(如精神科),同时周边有专科医院(如精神专科医院)。
推荐规则:向医院管理层推荐与周边精神专科医院建立合作关系,如双向转诊协议、联合专家会诊等,并生成合作方案建议。
5.3.3.3 运营优化规则
据机构的运营成本、收入来源,优化人员配置、降低设备采购成本。
触发条件:如果发现某机构的成本过高,利润微薄,
推荐规则:如优化人员配置、降低设备采购成本等。
根据患者的满意度和医疗质量指标,推荐服务质量改进措施。
触发条件:如果患者对医院的排队时间满意度较低,
推荐规则:建议优化挂号和就诊流程。
5.3.4基于区域画像应用规则设计
5.3.4.1 医疗资源调配规则
根据疾病事态的发展,合理安排区域资源。
触发条件:当区域画像中有某一区域发生突发公共卫生事件(如传染病爆发),且该区域周边医院的床位、医疗物资(如防护服、药品)储备信息显示资源不足。
推荐规则:启动区域医疗资源调配机制,从其他资源充足的区域调配床位、医疗物资和医护人员到受影响区域,并实时监控资源调配情况。
5.3.4.2 政策制定与监管
为卫生政策的制定提供数据支持,如根据区域医疗服务的供需情况,制定医保报销政策、医疗人才引入政策等,同时加强对区域内医疗机构的监管。
5.3.4.3 公共卫生规划规则
根据区域人群分布及机构数量,评估医疗资源覆盖的合理性。
触发条件:如果区域画像显示某地区的老年人比例超过 30%,且慢性病(如糖尿病、高血压)发病率较高,同时区域内社区卫生服务中心的数量低于标准。
推荐规则:建议卫生部门在该区域增加社区卫生服务中心的建设,规划慢性病管理和老年人健康服务项目,并分配相应的公共卫生资金。
5.5推理引擎
5.5.1 规则匹配算法
推理引擎负责将输入的画像数据与定义好的规则进行匹配。它可以采用正向推理(从已知事实推导出结论)、反向推理(从目标结论反推所需条件)或者混合推理的方式。例如,对于患者画像,正向推理是从患者的基本信息、疾病信息等推导出适合的治疗方案;反向推理则是从想要达到的治疗效果反推患者需要满足的条件,常见的规则有:特定标签内容、协同过滤、情境感知、时空间感知。推理引擎会遍历规则,找到与当前画像数据相匹配的规则集合。
5.5.2 冲突解决策略
当多个规则同时匹配时,需要确定冲突解决策略。可以采用优先级策略(为每个规则设定优先级,优先执行高优先级规则)、特异性策略(执行最具体的规则)或其他自定义策略(如根据业务重要性、数据更新时间等因素决定。