源码见专栏置顶~
论文作者:Yi Huang,Jiancheng Huang,Jianzhuang Liu,Yu Dong,Jiaxi Lv,Shifeng Chen
作者单位:Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences
论文链接:http://arxiv.org/abs/2305.13819v1
内容简介:
1)方向:图像恢复
2)应用:图像去雨滴、去模糊、去马赛克和降噪
3)背景:传统的图像恢复模型效果不佳,最新的基于扩散的方法表现更好,但存在长时间推理的问题。
4)方法:本文提出一种基于小波的扩散模型(WaveDM),并采用高效的条件采样策略(ECS)来解决长时间推理问题。WaveDM在小波变换后的小波域中学习干净图像的分布,条件是受损图像的小波谱,比在空间域中建模更省时。此外,ECS在初始采样期间遵循确定性隐式采样相同的过程,然后停止直接预测干净图像,从而将总采样步骤的数量减少到约5步。
5)结果:在包括图像去雨滴、去模糊、去马赛克和降噪在内的四个基准数据集上的评估表明,WaveDM实现了与传统一次通过方法相当的效率,并且比使用基础扩散模型的现有图像恢复方法快100多倍,同时实现了最先进的性能。