图像恢复+WaveDM:WaveDM: Wavelet-Based Diffusion Models for Image Restoration

文章提出WaveDM,一种基于小波的扩散模型,用于图像恢复,如去雨滴、去模糊、去马赛克和降噪。WaveDM结合了小波变换和条件采样策略ECS,解决了长时间推理的问题,实现与传统方法相当的效率,且比现有方法快100多倍,同时保持最佳性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

源码见专栏置顶~

论文作者:Yi Huang,Jiancheng Huang,Jianzhuang Liu,Yu Dong,Jiaxi Lv,Shifeng Chen

作者单位:Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences

论文链接:http://arxiv.org/abs/2305.13819v1

内容简介:

1)方向:图像恢复

2)应用:图像去雨滴、去模糊、去马赛克和降噪

3)背景:传统的图像恢复模型效果不佳,最新的基于扩散的方法表现更好,但存在长时间推理的问题。

4)方法:本文提出一种基于小波的扩散模型(WaveDM),并采用高效的条件采样策略(ECS)来解决长时间推理问题。WaveDM在小波变换后的小波域中学习干净图像的分布,条件是受损图像的小波谱,比在空间域中建模更省时。此外,ECS在初始采样期间遵循确定性隐式采样相同的过程,然后停止直接预测干净图像,从而将总采样步骤的数量减少到约5步。

5)结果:在包括图像去雨滴、去模糊、去马赛克和降噪在内的四个基准数据集上的评估表明,WaveDM实现了与传统一次通过方法相当的效率,并且比使用基础扩散模型的现有图像恢复方法快100多倍,同时实现了最先进的性能。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小P学长

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值