多模态+遥感图像分类Transformer-based Multi-Modal Learning for Multi Label Remote Sensing Image Classification

该论文提出了SynchronizedClassTokenFusion(SCTFusion)架构,用于多模态遥感图像的多标签分类。该方法利用Transformer编码器处理不同模态,通过同步类令牌实现模态间信息交换,提升分类效果。实验结果显示,SCTFusion在性能上优于单模态和早期融合方法,并且其代码已开源。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

多模态+遥感图像分类

Transformer-based Multi-Modal Learning for Multi Label Remote Sensing
Image Classification

在这里插入图片描述
论文作者:David Hoffmann,Kai Norman Clasen,Begüm Demir

作者单位:Technische Universität Berlin; BIFOLD

论文链接:http://arxiv.org/abs/2306.01523v1

项目链接:https://git.tu-berlin.de/rsim/sct-fusion

内容简介:

1)方向:遥感图像分类

2)应用:遥感图像分类

3)背景:在远程感知图像的多模态多标签分类中,以往的研究大多集中在单模态架构和早期融合的多模态架构上。然而,这种架构在处理不同模态之间的信息交换方面存在一定的限制。

4)方法:本文提出一种新的Synchronized Class Token Fusion (SCT Fusion)架构,通过利用模态特定的基于注意力机制的Transformer编码器来处理不同的输入模态,并在每个Transformer编码器块之后通过同步特殊类令牌进行模态间的信息交换。同步过程涉及使用可训练的融合变换将类令牌融合在一起,得到一个包含来自所有模态的信息的同步类令牌。由于融合变换是可训练的,它可以准确地表示不同模态之间的共享特征。

5)结果:实验结果表明,与单模态架构和早期融合多模态架构相比,所提出的架构在多模态多标签分类数据集上的表现更为有效。所提出的架构的代码公开可用。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

源码学习见专栏置顶~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小P学长

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值