超分辨率:Implicit Diffusion Models for Continuous Super-Resolution

文章提出了一种名为IDM的新方法,它整合了隐式神经表示和去噪扩散模型,以解决图像超分辨率中的过度平滑和伪影问题。IDM包含一个可缩放的调节机制,适应连续的分辨率要求,通过调整低分辨率信息和生成特征的比例。实验结果显示IDM在图像超分辨率任务上表现出色,超越了现有方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

源码学习见专栏置顶~

论文作者:Sicheng Gao,Xuhui Liu,Bohan Zeng,Sheng Xu,Yanjing Li,Xiaoyan Luo,Jianzhuang Liu,Xiantong Zhen,Baochang Zhang

论文链接:http://arxiv.org/abs/2303.16491v1

1)方向:图像超分辨率 

2)应用:图像超分辨率 

3)背景:当前的图像超分辨率方法通常存在过度平滑和伪影问题,并且大多数方法仅适用于固定的放大倍数。 

4)方法:引入一种隐式扩散模型(IDM),用于高保真连续图像超分辨率。IDM将隐式神经表示和去噪扩散模型集成到一个统一的端到端框架中,其中在解码过程中采用隐式神经表示来学习连续分辨率表示。此外,设计了一个可缩放的调节机制,包括低分辨率(LR)调节网络和缩放因子。缩放因子调节分辨率,并相应地调节最终输出中LR信息和生成特征的比例,使模型能够适应连续分辨率要求。 

5)结果:广泛的实验验证了IDM的有效性,并证明其在先前的艺术作品中具有优越的性能。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小P学长

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值