envi——遥感图像特征提取和选择(1)

1 什么是遥感图像特征提取和选择

遥感图像特征提取与选择即从图像的属性中选出有代表性的几个作为变量组合来区分遥感图像上的目标地物,从而提高遥感图像分类的精度

2 空间纹理特征提取——基于概率统计的纹理特征提取

启动envi,加载数据,在右侧搜索栏中搜素Occurrence measures,在弹出的Texture input file中选择要提取纹理特征的数据

texture to compute下的为纹理统计指标,你勾选了哪个该指标就会以局部窗口内每个灰度值出现次数去计算它的纹理特征指标,根据你想划分的指标去勾选

processing window即处理窗口大小,这里可以设置窗口的行列数,一般默认就行

Co-occurrence shift x_y_ 是设置偏移量的,默认就行

greyscale quantization levels是设置灰度量化级别的,灰度量化级别越高,图像中像素的灰度表达也越准确,但处理速度也会有所下降

点击OK即可得到结果,根据需要选择同一个波段将不同指标的结果加载到视图中即可,我这里显示的是第四波段

打开目录可以组合波段得到不同波段的组合特征,这个后面再写吧

### ENVI 中的纹理特征提取ENVI 软件环境中执行纹理特征提取涉及多个具体操作环节。启动 ENVI 后,加载待处理的数据集是首要步骤[^1]。对于纹理分析而言,在软件界面右侧的搜索栏输入“Occurrence measures”,这一步骤能够帮助定位到用于计算灰度共生矩阵(GLCM, Gray-occurrence Matrix)相关统计量的功能模块。 当找到对应的工具选项之后,在弹出的选择窗口即 Texture input file 对话框里指定含有目标区域影像文件的位置并打开它。此过程确保了后续针对特定图像开展细致化的纹理特性评估工作得以顺利展开。 完成上述准备工作后,用户可以进一步配置参数来定制化所需提取的具体类型的纹理指标。这些设置通常涵盖了方向角度、距离间隔等因素的影响考量,它们共同决定了最终输出结果的质量与适用范围。通过调整这些参数,可以获得不同条件下的纹理描述子,从而满足多样化的研究需求。 ```matlab % MATLAB 示例代码片段展示如何读取ENVI格式数据(假设已安装相应工具箱) data = multibandread('path_to_your_envi_file', [rows cols bands], 'uint16'); ``` 值得注意的是,虽然这里主要讨论基于 GLCM 的方法论框架,但实际上 ENVI 还支持其他多种先进的纹理分析技术,比如局部二值模式 (LBP),小波变换等高级算法的应用也日益广泛。每种方法都有其独特的优势以及应用场景偏好,因此选择最适合项目背景的技术方案至关重要。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值