大模型 Advanced-RAG(高级检索增强生成):从理论到 LlamaIndex 实战!

最近关于检索增强生成进行了调查,总结了三种最近发展的范式:

  1. Naive RAG(简单RAG)
  2. Advanced RAG(高级RAG)
  3. Modular RAG(模块化RAG)

本文首先讨论这些技术,接着分享如何使用 Python 中的 Llamaindex 实现一个简单的 RAG ,然后将其改进为一个包含以下高级 RAG 技术的高级 RAG 的全流程:

  1. 检索前优化:句子窗口检索
  2. 检索优化:混合搜索
  3. 检索后优化:重新排序

更多技术可以加入我们的讨论群

技术交流

前沿技术资讯、算法交流、求职内推、算法竞赛、面试交流(校招、社招、实习)等、与 10000+来自港科大、北大、清华、中科院、CMU、腾讯、百度等名校名企开发者互动交流~

我们建了大模型技术交流群, 想要进交流群、获取完整源码&资料、提升技术的同学,可以直接加微信号:mlc2060。加的时候备注一下:研究方向 +学校/公司+CSDN,即可。然后就可以拉你进群了。

方式①、微信搜索公众号:机器学习社区,后台回复:技术交流
方式②、添加微信号:mlc2060,备注:技术交流

通俗易懂讲解大模型系列

高级 RAG

随着 RAG 领域的最新进展,高级RAG已经成为一种新范式,针对简单 RAG 范式的一些局限性进行了有针对性的增强。

正如最近一项调查[1]所总结的,高级RAG技术可以分为三类:检索前优化、检索优化和检索后优化。

检索前优化

检索前优化集中在数据索引优化和查询优化上。数据索引优化技术旨在以有助于提高检索效率的方式存储数据,例如 [1]:

  1. 滑动窗口使用片段之间的重叠,是最简单的技术之一。
  2. 提高数据粒度应用数据清洗技术,例如删除无关信息、确认事实准确性、更新过时信息等。
  3. 添加元数据,如日期、目的或章节,用于过滤目的。
  4. 优化索引结构涉及不同的策略来索引数据,例如调整片段大小或使用多索引策略。本文将实现的一项技术是句子窗口检索,它将单个句子嵌入到检索中,并在推断时用更大的文本窗口替换它们。

此外,检索前技术不仅限于数据索引,还可以涉及推理时的技术,如查询路由、查询重写和查询扩展。

检索优化

检索阶段的目标是确定最相关的上下文。通常,检索基于向量搜索,它计算查询与索引数据之间的语义相似性。因此,大多数检索优化技术都围绕嵌入模型展开 [1]:

  1. 微调嵌入模型,将嵌入模型定制为特定领域的上下文,特别是对于术语不断演化或罕见的领域。例如,BAAI/bge-small-en是一个高性能的嵌入模型,可以进行微调(请参阅微调指南)。
  2. 动态嵌入根据单词的上下文进行调整,而静态嵌入则为每个单词使用单一向量。例如,OpenAI的embeddings-ada-02是一个复杂的动态嵌入模型,可以捕获上下文理解。[1]

除了向量搜索之外,还有其他检索技术,例如混合搜索,通常是指将向量搜索与基于关键字的搜索相结合的概念。如果您的检索需要精确的关键字匹配,则此检索技术非常有益。

检索后优化

对检索到的上下文进行额外处理可以帮助解决一些问题,例如超出上下文窗口限制或引入噪声,从而阻碍对关键信息的关注。在RAG调查中总结的检索后优化技术包括:

  1. 提示压缩:通过删除无关内容并突出重要上下文,减少整体提示长度。
  2. 重新排序:使用机器学习模型重新计算检索到的上下文的相关性得分。

先决条件

本节讨论了在本文中跟随所需的软件包和API密钥。

所需软件包

本文将使用 Python 在 LlamaIndex 中实现一个简单的和一个高级的RAG管道。

pip install llama-index

在本文中,我们将使用LlamaIndex v0.10。如果您正在从较旧的LlamaIndex版本升级,您需要运行以下命令以正确安装和运行LlamaIndex:

pip uninstall llama-index
pip install llama-index --upgrade --no-cache-dir --force-reinstall

LlamaIndex 提供了将向量嵌入存储在JSON文件中进行持久存储的选项,这对于快速原型设计是很好的。但是,由于高级RAG技术旨在用于生产环境的应用,我们将使用向量数据库进行持久存储。

除了存储向量嵌入之外,我们还需要元数据存储和混合搜索功能。因此,我们将使用支持这些功能的开源向量数据库 Weaviate(v3.26.2)。

pip install weaviate-client llama-index-vector-stores-weaviate

API密钥

我们将使用 Weaviate 嵌入式,您可以在不注册API密钥的情况下免费使用。但是,本教程使用了来自OpenAI的嵌入模型和LLM,您将需要一个OpenAI API密钥。要获得API密钥,您需要一个OpenAI帐户,然后在API密钥下“创建新的密钥”。

接下来,在根目录中创建一个名为 .env 的本地文件,并在其中定义您的API密钥:

OPENAI_API_KEY="<YOUR_OPENAI_API_KEY>"

然后,您可以使用以下代码加载您的API密钥:

# !pip install python-dotenv
import os
from dotenv import load_dotenv,find_dotenv

load_dotenv(find_dotenv())

使用 LlamaIndex 实现简单RAG

本节讨论了如何使用 LlamaIndex 实现简单的RAG管道。您可以在这个 Jupyter Notebook 中找到整个简单RAG管道。

步骤 1:定义嵌入模型和LLM

首先,您可以在全局设置对象中定义一个嵌入模型和LLM。这样做意味着您不必再次在代码中明确指定模型。

嵌入模型:用于为文档块和查询生成向量嵌入。
LLM:用于根据用户查询和相关上下文生成答案。

from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.llms.openai import OpenAI
from llama_index.core.settings import Settings

Settings.llm = OpenAI(model="gpt-3.5-turbo", temperature=0.1)
Settings.embed_model = OpenAIEmbedding()

步骤 2:加载数据

接下来,您将在根目录中创建一个名为 data 的本地目录,并从LlamaIndex GitHub存储库(MIT许可证)中下载一些示例数据。

!mkdir -p 'data'
!wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham_essay.txt'

然后,您可以加载数据以进行进一步处理:

from llama_index.core import SimpleDirectoryReader

# Load data
documents = SimpleDirectoryReader(
        input_files=["./data/paul_graham_essay.txt"]
).load_data()

步骤 3:将文档分块成节点

由于整个文档太大,无法适应LLM的上下文窗口,因此您需要将其分割成更小的文本块,称为节点。您可以使用 SimpleNodeParser 将加载的文档解析为节点,并定义块大小为 1024。

from llama_index.core.node_parser import SimpleNodeParser

node_parser = SimpleNodeParser.from_defaults(chunk_size=1024)

# Extract nodes from documents
nodes = node_parser.get_nodes_from_documents(documents)

步骤 4:构建索引

接下来,您将构建一个索引,该索引将所有外部知识存储在Weaviate中,这是一个开源的向量数据库。

首先,您需要连接到Weaviate实例。在本例中,我们使用的是Weaviate Embedded,它允许您在Notebooks中免费进行实验,而无需API密钥。对于生产就绪的解决方案,建议您自己部署Weaviate,例如通过Docker或利用托管服务。

import weaviate

# Connect to your Weaviate instance
client = weaviate.Client(
    embedded_options=weaviate.embedded.EmbeddedOptions(), 
)

接下来,您将从Weaviate客户端构建一个 VectorStoreIndex 来存储和交互您的数据。

from llama_index.core import VectorStoreIndex, StorageContext
from llama_index.vector_stores.weaviate import WeaviateVectorStore

index_name = "MyExternalContext"

# Construct vector store
vector_store = WeaviateVectorStore(
    weaviate_client = client, 
    index_name = index_name
)

# Set up the storage for the embeddings
storage_context = StorageContext.from_defaults(vector_store=vector_store)

# Setup the index
index = VectorStoreIndex(
    nodes,
    storage_context = storage_context,
)

步骤 5:设置查询引擎

最后,您将将索引设置为查询引擎。

# The QueryEngine class is equipped with the generator
# and facilitates the retrieval and generation steps
query_engine = index.as_query_engine()

步骤 6:在您的数据上运行一个简单的 RAG 查询

现在,您可以在您的数据上运行一个简单的RAG查询,如下所示:

# Run your naive RAG query
response = query_engine.query(
    "What happened at Interleaf?"
)

使用 LlamaIndex 实现高级RAG

本教程将涵盖以下一系列高级 RAG 技术的选择:

  • 检索前优化:句子窗口检索
  • 检索优化:混合搜索
  • 检索后优化:重新排序

索引优化示例:句子窗口检索

对于句子窗口检索技术,您需要进行两个调整:首先,您必须调整如何存储和后处理您的数据。我们将使用 SentenceWindowNodeParser,而不是 SimpleNodeParser。

from llama_index.core.node_parser import SentenceWindowNodeParser

node_parser = SentenceWindowNodeParser.from_defaults(
    window_size=3,
    window_metadata_key="window",
    original_text_metadata_key="original_text",
)

SentenceWindowNodeParser 做了两件事情:

  • 它将文档分成单个句子,这些句子将被嵌入。
  • 对于每个句子,它创建一个上下文窗口。如果您指定 window_size = 3,则生成的窗口将为三个句子长,从嵌入句子的前一个句子开始,并跨越后一个句子。窗口将存储为元数据。

在检索过程中,返回与查询最接近的句子。检索后,您需要通过定义 MetadataReplacementPostProcessor 并在节点后处理器列表中使用它来用元数据替换句子。

from llama_index.core.postprocessor import MetadataReplacementPostProcessor

# The target key defaults to `window` to match the node_parser's default
postproc = MetadataReplacementPostProcessor(
    target_metadata_key="window"
)
...
query_engine = index.as_query_engine( 
    node_postprocessors = [postproc],
)

检索优化示例:混合搜索

在LlamaIndex中实现混合搜索与两个参数更改相同,如果底层向量数据库支持混合搜索查询的话。alpha 参数指定向量搜索和基于关键字的搜索之间的加权,其中 alpha = 0

表示基于关键字的搜索,alpha = 1 表示纯向量搜索。

query_engine = index.as_query_engine(
    ...,
    vector_store_query_mode="hybrid", 
    alpha=0.5,
    ...
)

检索后优化示例:重新排序

将 reranker 添加到您的高级RAG管道中只需要三个简单的步骤:

首先,定义一个重新排序模型。在这里,我们使用来自Hugging Face的 BAAI/bge-reranker-base。
在查询引擎中,将重新排序模型添加到节点后处理器列表中。
在查询引擎中增加 similarity_top_k 以检索更多的上下文段落,在重新排序后可以将其减少到 top_n。

# !pip install torch sentence-transformers
from llama_index.core.postprocessor import SentenceTransformerRerank

# Define reranker model
rerank = SentenceTransformerRerank(
    top_n = 2, 
    model = "BAAI/bge-reranker-base"
)
...
# Add reranker to query engine
query_engine = index.as_query_engine(
		similarity_top_k = 6,
		...,
                node_postprocessors = [rerank],
		...,
)

高级RAG范式中还有许多不同的技术。如果您对进一步的实现感兴趣,可以加入我们讨论群。

参考

[1] Gao, Y., Xiong, Y., Gao, X., Jia, K., Pan, J., Bi, Y., … & Wang, H. (2023). Retrieval-augmented generation for large language models: A survey. arXiv preprint arXiv:2312.10997.
[2] https://towardsdatascience.com/advanced-retrieval-augmented-generation-from-theory-to-llamaindex-implementation-4de1464a9930

  • 16
    点赞
  • 26
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
实现大模型RAG(Retrieval Augmented Generation)主要包括**数据准备阶段和应用阶段**两个关键环节。具体步骤如下: 1. **数据准备阶段**: - **数据提取**:首先需要确定并提取适用于特定领域的私域数据,这些数据可以是PDF文件、数据库内容或其他形式的私有知识库。 - **文本分割**:将提取出的文档进行分块处理,以便于后续的处理和检索。 - **向量化**:对分割后的文本块进行向量化操作,即将文本转换为机器能够高效处理的数值表示形式。 - **数据入库**:处理好的数据需要构建索引并存入向量数据库中,为接下来的检索任务做准备。 2. **应用阶段**: - **用户提问**:当用户提出问题时,同样需要将这个查询向量化。 - **数据检索**:利用向量数据库的检索能力,找出与用户提问相似度最高的k个文档片段。 - **注入Prompt**:将检索到的结果结合用户的原始提问,按照一定的Prompt模板组装成一个完整的输入提示给大语言模型。 - **LLM生成答案**:大语言模型根据提供的Prompt生成最终的回答。 此外,还需要考虑如何优化数据的准备过程,比如选择适合的向量化技术(如使用词嵌入模型)以及如何设计高效的检索算法来快速准确地从大量数据中找到相关信息。同时,在应用阶段,需要精心设计Prompt模板,以便大模型能更好地理解问题和检索到的信息,从而给出更准确的回答。 值得一提的是,RAG架构的优势在于它结合了大模型的强大语言理解和生成能力以及向量检索系统的高效信息获取能力,使得大模型能够在专业场景或行业细分领域中提供更加精准和丰富的回答。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值