Deep learning 九 循环神经网络

        目前见过的所有神经网络(比如密集连接网络和卷积神经网络)都有一个主要特点,那就是它们都没有记忆。它们单独处理每个输人,在输人与输人之间没有保存任何状态。对于这样的网络,要想处理数据点的序列或时间序列,需要向网络同时展示整个序列,即将序列转换成单个数据点。例如,在IMDB 示例中就是这么做的:将全部电影评论转换为一个大向量
然后一次性处理。这种网络叫作前馈网络(feedforward network)。与此相反,当在阅读这个句子时,是一个词一个词地阅读(或者说,眼睛一次扫视一次扫视地阅读),同时会记住之前的内容。这让你能够动态理解这个句子所传达的含义。生物智能以渐进的方式处理信息,同时保存一个关于所处理内容的内部模型,这个模型是根据过去的信息构建的,并随着新信息的进入而不断更新。

        循环神经网络(RNN,recurrent neural network)采用同样的原理,不过是一个极其简化的版本:它处理序列的方式是,遍历所有序列元素,并保存一个状态(state ),其中包含与已查看内容相关的信息。实际上,RNN 是一类具有内部环的神经网络(见图 6-9)。在处理两个不同的独立序列(比如两条不同的IMDB 评论)之间,RNN 状态会被重置,因此,你仍可以将一个序列看作单个数据点,即网络的单个输人。真正改变的是,数据点不再是在单个步骤中进行处理相反,网络内部会对序列元素进行遍历。 

        为了将环(loop)和状态的概念解释清楚我们用Numpy 来实现一个简单 RNN 的前向传递这个RNN的输人是一个张量序列,我们将其编码成大小为(timesteps,input_features)的二维张量。它对时间步(timestep)进行遍历,在每个时间步,它考虑 时刻的当前状态与t时刻的输人[形状为(input_features,)],对者计算得到 时刻的输出。然后,我们将下一个时间步的状态设置为上一个时间步的输出。对于第一个时间步,上一个时间步的输出没有定义,所以它没有当前状态。因此,你需要将状态初始化为一个全零向量,这叫作网络的初始状态(initial state )。

 

'''RNN伪代码'''
state_t = 0
for input_t in input_sequence: '''对序列元素进行遍历'''
    output_t = f(input_t, state_t) 
    state_t = output_t '''前一次的输出变成下一次迭代的状态'''


'''更详细的RNN伪代码'''
state_t = 0
for input_t in input_sequence:
    output_t = f(dot(w, input_t) + dot(U, state_t) + b)
    state_t = output_t
'''简单RNN的Numpy实现'''
import numpy as np

timesteps = 100 '''输入序列的时间步数'''
input_features = 32 '''输入特征空间的维度'''
output_features = 64 '''输出特征空间的维度'''

inputs = np.random.random((timesteps, input_features))'''输入数据:随机噪声仅作为示例'''

state_t = np.zeros((output_features,)) '''初始状态:全零向量'''

W = np.random.random((output_features, input_features)) '''创建随机的权重矩阵'''
U = np.random.random((output_features, output_features))
b = np.random.random((output_features,))

successive_outputs = []
for input_t in inputs:  '''input_t 是形状为(input_features,)的向量'''
    output_t = np.tanh(np.dot(W, input_t) + np.dot(U, state_t) + b)
'''由输入和当前状态(前一个输出)计算得到当前输出'''
    successive_outputs.append(output_t)'''将这个输出保存到一个列表中'''
    state_t = output_t '''更新网络的状态,用于下一个时间步'''
final_output_sequence = np.concatenate(successive_outputs, axis=0)
'''最终输出是一个形状为(timesteps,output_features)的二维张量'''

足够简单。总之,RNN 是一个 for 循环它重复使用循环前一次迭代的计算结果,仅此而已。当然可以构建许多不同的RNN,它们都满足上述定义。这个例子只是最简单的RNN表述之一RNN的特征在于其时间步函数,比如前面例子中的这个函数(见图6-10)。

                                                   图6-10一个简单的 RNN,沿时间展开 

本例中,最终输出是一个形状为(timesteps, output_features)的二维张量,其中每个时间步是循环在七时刻的输出。输出张量中的每个时间步七包含输入序列中时间步0~t 的信息,即关于全部过去的信息。因此,在多数情况下,你并不需要这个所有输出组成的序列,你只需要最后一个输出(循环结束时的 output_t),因为它已经包含了整个序列的信息。 

一.Keras中的循环层

上面Numpy 的简单实现,对应一个实际的 Keras 层,即simpleRNN 层

二者有一点小小的区别:simpleRNN 层能够像其他 Keras 层一样处理序列批量,而不是像Numpy示例那样只能处理单个序列。因此,它接收形状为(batch_size, timesteps,input_features)的输人,而不是(timesteps,input_features)。
与Keras中的所有循环层一样,simpleRNN可以在两种不同的模式下运行:一种是返回每个时间步连续输出的完整序列,即形状为(batch_size,timesteps, output_features)的三维张量:另一种是只返回每个输入序列的最终输出,即形状为 (batch_size, outputfeatures)的二维张量。这两种模式由 return_sequences 这个构造函数参数来控制。

接下来,将这个模型应用于IMDB 电影评论分类问题。首先,对数据进行预处理。

'''准备IMDB数据'''
from keras.datasets import imdb
from keras.preprocessing import sequence

max_features = 10000
# number of words to consider as features
'''作为特征的单词个数'''
maxlen = 500  
# cut texts after this number of words (among top max_features most common words)
'''在这么多单词之后截断文本(这些单词都属于前max_features 个最常见的单词)'''
batch_size = 32

print('Loading data...')
(input_train, y_train), (input_test, y_test) = imdb.load_data(num_words=max_features)
print(len(input_train), 'train sequences')
print(len(input_test), 'test sequences')

print('Pad sequences (samples x time)')
input_train = sequence.pad_sequences(input_train, maxlen=maxlen)
input_test = sequence.pad_sequences(input_test, maxlen=maxlen)
print('input_train shape:', input_train.shape)
print('input_test shape:', input_test.shape)

 

'''用Embedaing 层和simpleRNN 层来训练模型'''
from keras.layers import Dense

model = Sequential()
model.add(Embedding(max_features, 32))
model.add(SimpleRNN(32))
model.add(Dense(1, activation='sigmoid'))

model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['acc'])
history = model.fit(input_train, y_train,
                    epochs=10,
                    batch_size=128,
                    validation_split=0.2)
'''绘制结果'''
import matplotlib.pyplot as plt

acc = history.history['acc']
val_acc = history.history['val_acc']
loss = history.history['loss']
val_loss = history.history['val_loss']

epochs = range(len(acc))

plt.plot(epochs, acc, 'bo', label='Training acc')
plt.plot(epochs, val_acc, 'b', label='Validation acc')
plt.title('Training and validation accuracy')
plt.legend()

plt.figure()

plt.plot(epochs, loss, 'bo', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.legend()

plt.show()

在前面,处理这个数据集的第一个简单方法得到的测试精度是 88%。不幸的是与这个基准相比,这个小型循环网络的表现并不好(验证精度只有 85%。问题的部分原因在于输人只考虑了前 500个单词,而不是整个序列,因此,RNN 获得的信息比前面的基准模型更少另一部分原因在于,simpleRNN 不擅长处理长序列,比如文本。
其他类型的循环层的表现要好得多。来看几个更高级的循环层 

二.理解LSTM 层和GRU层

LSTM 和GRU的计算的参数分别为simple RNN的4倍和3倍

        simpleRNN 并不是 Keras 中唯一可用的循环层,还有另外两个:LSTM和GRU。在实践中总会用到其中之一,因为simpleRNN 通常过于简化没有实用价值。simpleRNN 的最大问题是在时刻t,理论上来说,它应该能够记住许多时间步之前见过的信息,但实际上它是不可能学到这种长期依赖的。其原因在于梯度消失问题(vanishing gradient problem),这一效应类似于在层数较多的非循环网络(即前馈网络)中观察到的效应:随着层数的增加,网络最终变得无法训练。Hochreiter、Schmidhuber 和 Bengio 在20 世纪90年代初研究了这一效应的理论原因OLSTM 层和GRU 层都是为了解决这个问题而设计的。
        先来看LSTM层。其背后的长短期记忆(LSTM,long short-term memory)算法由 Hochreiter和Schmidhuber在 1997年开发,是二人研究梯度消失问题的重要成果。LSTM层是 simpleRNN 层的一种变体,它增加了一种携带信息跨越多个时间步的方法。假设有一条传送带,其运行方向平行于你所处理的序列。序列中的信息可以在任意位置跳上传送带然后被传送到更晚的时间步,并在需要时原封不动地跳回来。这实际上就是 LSTM 的原理:它保存信息以便后面使用,从而防止较早期的信号在处理过程中逐渐消失。为了详细了解LSTM,我们先从 simpleRNN单元开始讲起(见图6-13)。因为有许多个权重矩阵,所以对单元中的 w和u 两个矩阵添加下标字母。(wo和o),表示输出。

                                         图6-13 讨论LSTM 层的出发点:simpleRNN 层 

向这张图像中添加额外的数据流,其中携带着跨越时间步的信息。它在不同的时间步的值叫作 ct,其中c表示携带(carry)。这些信息将会对单元产生以下影响:它将与输人连接和循环连接进行运算(通过一个密集变换,即与权重矩阵作点积,然后加上一个偏置,再应用一个激活函数 ),从而影响传递到下一个时步的状态(通过一个激活函数和一个乘法运算)从概念上来看,携带数据流是一种调节下一个输出和下一个状态的方法 (见图 6-14)。

                                 图6-14 从simpleRNN到LSTM:添加一个携带轨道

下面来看这一方法的精妙之处,即携带数据流下一个值的计算方法。它涉及三个不同的变换,这三个变换的形式都和 simpleRNN 单元相同。 

但这三个变换都具有各自的权重矩阵,我们分别用字母 i、和k作为下标。目前的模型架构如下所示

'''LSTM 架构的详细伪代码'''
output_t = activation(dot(state_t, Uo) + dot(input_t, Wo) + dot(C_t, Vo) + bo)

i_t = activation(dot(state_t, Ui) + dot(input_t, Wi) + bi)
f_t = activation(dot(state_t, Uf) + dot(input_t, Wf) + bf)
k_t = activation(dot(state_t, Uk) + dot(input_t, Wk) + bk)

如果要更哲学一点,你还可以解释每个运算的目的。比如你可以说,将 c_t 和 f_t 相乘是为了故意遗忘携带数据流中的不相关信息。同时,i_t 和 kt 都提供关于当前的信息,可以用新信息来更新携带轨道。但归根结底,这些解释并没有多大意义,因为这些运算的实际效果是由参数化权重决定的,而权重是以端到端的方式进行学习,每次训练都要从头开始,不可能为某个运算赋予特定的目的。RNN单元的类型(如前所述)决定了你的假设空间,即在训练期间搜索良好模型配置的空间,但它不能决定 RNN 单元的作用,那是由单元权重来决定的。同一个单元具有不同的权重,可以实现完全不同的作用。因此,组成 RNN 单元的运算组合,最好被解释为对搜索的一组约束,而不是一种工程意义上的设计。
对于研究人员来说,这种约束的选择(即如何实现 RNN 单元)似乎最好是留给最优化算法来完成(比如遗传算法或强化学习过程),而不是让人类工程师来完成。在未来,那将是我们构建网络的方式。总之,你不需要理解关于LSTM单元具体架构的任何内容。作为人类,理解它不应该是你要做的。你只需要记住 LSTM 单元的作用:允许过去的信息稍后重新进入,从而解决梯度消失问题。 

三、Keras中一个LSTM的具体例子

现在来看一个更实际的问题:使用LSTM 层来创建一个模型,然后在IMDB 数据上训练模型(见图6-16和图6-17)。这个网络与前面绍的 smpleRNN 网络类似。你只需指定LSTM 层的输出维度,其他所有参数(有很多)都使用 Keras 默认值。Keras 具有很好的默认值无须手动调参,模型通常也能正常运行。 

'''使用Keras中的LSTM 层'''
from keras.layers import LSTM

model = Sequential()
model.add(Embedding(max_features, 32))
model.add(LSTM(32))
model.add(Dense(1, activation='sigmoid'))

model.compile(optimizer='rmsprop',
              loss='binary_crossentropy',
              metrics=['acc'])
history = model.fit(input_train, y_train,
                    epochs=10,
                    batch_size=128,
                    validation_split=0.2)

 

这一次,验证精度达到了89%。还不错,肯定比 simpleRNN 网络好多了,这主要是因为LSTM 受梯度消失问题的影响要小得多。这个结果也比第3 章的全连接网络略好,虽然使用的数据量比前面要少。此处在 500 个时间步之后将序列截断,而在前面是读取整个序列。但对于一种计算量如此之大的方法而言,这个结果也说不上是突破性的。为什么 LSTM不能表现得更好?一个原因是你没有花力气来调节超参数,比如嵌人维度或LSTM 输出维度。另一个原因可能是缺少正则化。但说实话,主要原因在于,适用于评论分析全局的长期性结构(这正是LSTM 所擅长的),对情感分析问题帮助不大。对于这样的基本问题,观察每条评论中出现了哪些词及其出现频率就可以很好地解决。这也正是第一个全连接方法的做法。但还有更加困难的自然语言处理问题,特别是问答和机器翻译,这时 LSTM的优势就明显了。 

四、小结

1.循环神经网络(RNN)的概念及其工作原理。
2.长短期记忆(LSTM)是什么,为什么它在长序列上的效果要好于普通 RNN。

3.如何使用Keras的RNN层来处理序列数据
 

  • 27
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值