目录
线性模型
\(f(x)=\omega_{1}x_{1}+\omega _{2}x_{2}+...+\omega _{d}x_{d}+b\)
\(f(x)=\omega _{}^{T}x+b\) , \(\omega =(\omega _{1};\omega _{2};...;\omega _{d}).\)
线性回归
有序多值离散特征:“高度”的取值高、中、低可转化为{1.0,0.5,0.0};
无序多值离散特征:若有k个属性值,则转化为k维向量比如“瓜”的种类西瓜、南瓜、黄瓜可转化为(0,0,1)、(0,1,0)、(1,0,0).
损失函数:
\(E(w,b)=\sum_ {i=1}^{m}(y_{i}-f(x_{i}))^2\)
使得损失函数最小的\(w\)和\(b\)为,
\((w_{}^{*},b_{}^{*})=\arg min\sum_{i=1}^{m}(y_{i}-wx_{i}-b)^2\)
最小二乘估计:找到一条直线使得所有样本到直线的欧氏距离之和最小,也就是寻找\(w\)和\(b\)使\(E(w,b)=\sum_ {i=1}^{m}(y_{i}-f(x_{i}))^2\)最小。
一元线性回归:将损失函数分别对和
求导,得,
\(\frac{\partial E(w,b)}{\partial w}=2(w\sum_{i=1}^{m}x_{i}^{2}-\sum_{i=1}^{m}(y_{i}-b)x_{i})\)
\(\frac{\partial E(w,b)}{\partial b}=2(mb-\sum_{i=1}^{m}(y_{i}-wx_{i}))\)
联立求解得到,
\(w=\frac{\sum_{i=1}^{m}y_{i}x_{i}-\bar{y}\sum_{i=1}^{m}x_{i}}{\sum_{i=1}^{m}x_{i}^2-\bar{x}\sum_{i=1}^{m}x_{i}}\)
把\(\bar{y}\sum_{i=1}^{m}x_{i}=\bar{x}\sum_{i=1}^{m}y_{i}\),\(\bar{x}\sum_{i=1}^{m}x_{i}=\frac{1}{m}(\sum_{i=1}^{m}x_{i})^2\)代入式子,得到,
\(w=\frac{\sum_{i=1}^{m}y_{i}(x_{i}-\bar{x})}{\sum_{i=1}^{m}x_{i}^2-\frac{1}{m}(\sum_{i=1}^{m}x_{i})^2}\)
\(b=\frac{1}{m}\sum_{i=1}^m(y_{i}-wx_i)\)
多元线性回归:令,
\(\hat{w}=(w;b)\)
\(X=\begin{pmatrix} x_1^T &1 \\ x_2^T&1 \\ ... & ...\\ x_m^T & 1 \end{pmatrix}\)
则,
\(f(x)=X\hat{w}\)
\(E_{\hat{w}}=(y-X\hat{w})^T(y-X\hat{w})\)
\(\hat{w}^*=\arg_{\hat{w}} min(y-X\hat{w})^T(y-X\hat{w})\)
对损失函数求导,
\(\frac{\partial E_{\hat{w}}}{\partial \hat{w}}=\frac{\partial y^Ty}{\partial \hat{w}}-\frac{\partial y^TX\hat{w}}{\partial \hat{w}}-\frac{\partial \hat{w}^TX^Ty}{\partial \hat{w}}+\frac{\partial \hat{w}^TX^TX\hat{w}}{\partial \hat{w}}\)
\(=0-X^Ty-X^Ty+(X^TX+X^TX)\hat{w}\)
\(=2X^T(X\hat{w}-y)\)
当\(X^TX\)为满秩矩阵或正定矩阵时,令\(\frac{\partial E_{\hat{w}}}{\partial \hat{w}}\)为零,得到,
\(2X^T(X\hat{w}-y)=0\)
\(2X^TX\hat{w}=2X^Ty\)
\(\hat{w}^*=(X^TX)^{-1}X^Ty\)
故,
\(f(\hat{x_i})=X(X^TX)^{-1}X^Ty\) .