西瓜书第三章\线性回归

目录

线性模型

线性回归


线性模型

        f(x)=\omega_{1}x_{1}+\omega _{2}x_{2}+...+\omega _{d}x_{d}+b

        f(x)=\omega _{}^{T}x+b  , \omega =(\omega _{1};\omega _{2};...;\omega _{d}).

线性回归

有序多值离散特征:“高度”的取值高、中、低可转化为{1.0,0.5,0.0};

无序多值离散特征:若有k个属性值,则转化为k维向量比如“瓜”的种类西瓜、南瓜、黄瓜可转化为(0,0,1)、(0,1,0)、(1,0,0).

损失函数

E(w,b)=\sum_ {i=1}^{m}(y_{i}-f(x_{i}))^2

使得损失函数最小的wb为,

(w_{}^{*},b_{}^{*})=\arg min\sum_{i=1}^{m}(y_{i}-wx_{i}-b)^2

最小二乘估计:找到一条直线使得所有样本到直线的欧氏距离之和最小,也就是寻找wb使E(w,b)=\sum_ {i=1}^{m}(y_{i}-f(x_{i}))^2最小。

一元线性回归:将损失函数分别对wb求导,得,

\frac{\partial E(w,b)}{\partial w}=2(w\sum_{i=1}^{m}x_{i}^{2}-\sum_{i=1}^{m}(y_{i}-b)x_{i})

\frac{\partial E(w,b)}{\partial b}=2(mb-\sum_{i=1}^{m}(y_{i}-wx_{i}))

联立求解得到,

w=\frac{\sum_{i=1}^{m}y_{i}x_{i}-\bar{y}\sum_{i=1}^{m}x_{i}}{\sum_{i=1}^{m}x_{i}^2-\bar{x}\sum_{i=1}^{m}x_{i}}

\bar{y}\sum_{i=1}^{m}x_{i}=\bar{x}\sum_{i=1}^{m}y_{i}\bar{x}\sum_{i=1}^{m}x_{i}=\frac{1}{m}(\sum_{i=1}^{m}x_{i})^2代入式子,得到,

w=\frac{\sum_{i=1}^{m}y_{i}(x_{i}-\bar{x})}{\sum_{i=1}^{m}x_{i}^2-\frac{1}{m}(\sum_{i=1}^{m}x_{i})^2}

b=\frac{1}{m}\sum_{i=1}^m(y_{i}-wx_i)

多元线性回归:令,

\hat{w}=(w;b)

X=\begin{pmatrix} x_1^T &1 \\ x_2^T&1 \\ ... & ...\\ x_m^T & 1 \end{pmatrix}

则,

f(x)=X\hat{w}

E_{\hat{w}}=(y-X\hat{w})^T(y-X\hat{w})

\hat{w}^*=\arg_{\hat{w}} min(y-X\hat{w})^T(y-X\hat{w})

对损失函数求导,

\frac{\partial E_{\hat{w}}}{\partial \hat{w}}=\frac{\partial y^Ty}{\partial \hat{w}}-\frac{\partial y^TX\hat{w}}{\partial \hat{w}}-\frac{\partial \hat{w}^TX^Ty}{\partial \hat{w}}+\frac{\partial \hat{w}^TX^TX\hat{w}}{\partial \hat{w}}

          =0-X^Ty-X^Ty+(X^TX+X^TX)\hat{w}

                                ​​​​​​​        ​​​​​​​      =2X^T(X\hat{w}-y)

X^TX为满秩矩阵或正定矩阵时,令\frac{\partial E_{\hat{w}}}{\partial \hat{w}}为零,得到,

2X^T(X\hat{w}-y)=0

2X^TX\hat{w}=2X^Ty

\hat{w}^*=(X^TX)^{-1}X^Ty

故,

f(\hat{x_i})=X(X^TX)^{-1}X^Ty .

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值