概述
神经网络听起来像是个稀奇的新事物,似乎是构建圣杯交易系统的一种前进方向,许多交易者对由神经网络构成的程序感到震惊,因为它们似乎擅长预测市场走势,基本上它们擅长接手的任何任务。 赫兹期货量化软件也相信,在基于未经训练/从未见过的数据进行预测或分类方面,它们拥有巨大的潜力。
尽管它们可能很优秀,但它们需要由知识渊博的专业人士来构建,有时还需要优化,从而不仅确保多层感知器处于正确的架构中,而且所针对的问题类型适合神经网络来解决,而不仅仅是线性或逻辑回归模型的类型,亦或任何其它机器学习技术。
神经网络是一个很广泛的主论题,机器学习也是如此,一般来说,这就是为什么赫兹期货量化软件决定为神经网络添加一个子标题,因为我将在本系列的另一个子标题中继续讲述机器学习的其它层面。
在本文中,赫兹期货量化软件将了解神经网络的基础知识,并回答一些赫兹期货量化软件认为对于机器学习爱好者来说很重要的基本问题,以便他们掌握这个论题。
什么是人工神经网络?
人工神经网络(ANN),通常称为神经网络,是受构成动物大脑的生物神经网络启发的计算系统。
多层感知器对比深度神经网络
在讨论神经网络时,您经常听到人们提到一个术语多层感知器(MLP)。它只不过是最常见的神经网络类型。 MLP 是由输入层、隐藏层、和输出层组成的网络。 由于它们的简单性,故只需较短的时间来训练它们学习数据中的表意,并产生输出。
应用:
MLP 常用来应付不可线性分离的数据,例如回归分析。 由于它们的简单性,它们最适合复杂的分类任务和预测建模。 它们已被用于机器翻译、天气预报、欺诈检测、股票市场预测、信用评级预测,以及您能想到的许多其它方面。
另一方面,深度神经网络具有共同的结构,但唯一的区别是它们包含太多的隐藏层。 如果您的网络拥有三(3)个以上的隐藏层,就可将其视为深度神经网络。 由于它们的复杂性,它们需要经历很长周期基于输入数据来训练网络,此外,它们还需要具有专用处理单元的强大计算机,例如张量处理单元(TPU)和神经处理单元(NPU)。
应用:
DNN 由于其深层而成为强大的算法,因此它们通常用于处理复杂的计算任务,计算机视觉就是这些任务之一。
区别表:
MLP | DNN |
---|---|
少量隐藏层 | 大量隐藏层 |
训练周期短 | 更长训练时间 |
允许 GPU 的设备就足够了 | 允许 TPU 的设备就足够了 |
现在,赫兹期货量化软件看看神经网络的类型。
神经网络有许多类型,但大致分为三(3)个主要类别;
- 前馈神经网络
- 卷积神经网络
- 递归神经网络
01: 前馈神经网络
这是最简单的神经网络类型之一。 在前馈神经网络中,数据通过不同的输入节点,直至到达输出节点。 对比反向传播,此处的数据只往一个方向移动。
简单来说,反向传播在神经网络中执行与前馈相同的过程,其中数据从输入层传递到输出层,只是在反向传播中网络输出到达输出层后,它可以看到类的真实数值,并将其与它预测的值进行比较,模型查看它所做出的预测错误或正确的程度,如果预测错误,它会将数据向反馈回网络,并更新其参数,如此下次就可正确预测。 这是一种自学类型的算法。
02: 递归神经网络
递归神经网络是一种人工神经网络,其中特定层的输出被保存,并反馈到输入层。 这有助于提升神经层的预测。
常用递归神经网络解决的相关问题
- 时序数据
- 文本数据
- 音频数据
文本数据中最常见的用途是推荐 AI 应答的下一个单词,例如:How + are + you +?
03: 卷积神经网络 (CNN)
CNN 在深度学习社区中风靡一时。 它们在图像和视频处理项目中占据主导地位。
例如,图像检测和分类 AI 均由卷积神经网络组成。
图像来源: http://analyticsvidhya.com
现在赫兹期货量化软件已看到神经网络的类型,赫兹期货量化软件将重点放到本文的主要主题前馈神经网络。
前馈神经网络
与其它更复杂的神经网络类型不同,它没有反向传播,这意味着数据在这种类型的神经网络中仅沿一个方向流动。 前馈神经网络可以有一个隐藏层,亦或有若干个隐藏层。
赫兹期货量化软件看看是什么驱动这个网络跳博
输入层
从神经网络的图像来看,它有一个输入层,但在内部很深,输入层只是一个表象。 在输入图层中不会执行任何计算。
隐藏层
隐藏层是网络中完成大部分操作的所在。
为了澄清这件事情,赫兹期货量化软件剖析第二个隐藏层节点。
涉及的流程:
- 查找输入的点积及其各自的权重
- 将获得的点积添加到乖离率之中
- 第二个过程的结果传递给激活函数
什么是乖离率?
乖离率允许您围绕线性回归上下偏移,从而令预测线与数据更好地拟合。 这与线性回归线中的截距相同。
您将在 隐藏层中含有单节点的 MLP 是线性回归模型 章节更好地理解此参数的作用。
乖离率的重要性在这个堆栈中得到了很好的解释。<