Sobel算子

结论部分

对于k阶Sobel算子,令

$$Smooth(p) = \binom{k-1}{p}.$$

$$Diff(p) = \binom{k-2}{p-1} - \binom{k-2}{p}.$$

所以Sobel算子为

$$SobelX(x,y) = [Diff(x)Smooth(y)]_{k \times k}.$$

$$SobelY(x,y) = [Diff(y)Smooth(x)]_{k \times k}.$$

显然,二项分布趋于正态分布,所以,Sobel算子自带高斯光滑.

推导部分

考察X方向,一维情况,有k个值

$$a_0, a_1, \ldots, a_{k-1}.$$

则差分有k-1个

$$a_1 - a_0, a_2 - a_1, \ldots, a_{k-1} - a_{k-2}.$$

取二项分布作正态分布的近似

$$A = \binom{k-2}{0} (a_1 - a_0) + \binom{k-2}{1} (a_2 - a_1) + \ldots + \binom{k-2}{k-2} (a_{k-1} - a_{k-2}).$$

$$A = - \binom{k-2}{0} a_0 + \left( \binom{k-2}{0} - \binom{k-2}{1} \right) a_1 + \ldots + \binom{k-2}{k-2} a_{k-1}.$$

所以

$$A = \sum_{p=0}^{k-1} Diff(p) a_p.$$

二维情况,Y方向有k个A,每个A都是固定Y之后的X方向的差分,所以

$$A_0, A_1, \ldots, A_{k-1}.$$

取二项分布作正态分布的近似

$$S = \binom{k-1}{0} A_0 + \binom{k-1}{1} A_1 + \ldots + \binom{k-1}{k-1} A_{k-1}.$$

所以

$$S = \sum_{p=0}^{k-1} Smooth(p) A_p.$$

展开得

$$S = \sum_{p=0}^{k-1}\sum_{q=0}^{k-1} Diff(p) Smooth(q) a_{p,q}.$$

显然,归一项为

$$U = 2^{k-2} \cdot 2^{k-1} = 2^{2k-3}.$$

所以

$$\frac{S}{U}$$

表示平均差分.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值