极限、连续、可导、可微之间的关系(高等数学下册)

极限连续可导可微之间的关系如下:

可导一定连续,因为可导函数在定义域内每一点都存在唯一的切线,这意味着函数在该点的变化趋势是明确的从而保证了函数的连续性

连续不一定可导,例如,一个折线或者有角的函数在顶点处是连续的,但不可导。

对于一元函数,可微和可导是相同的概念,都意味着函数在该点存在唯一的切线;对于多元函数,可微要求所有的偏导数连续,这是一个比可导更强的条件。

函数在某点可微,则该点一定存在极限,因为可微意味着函数在该点的变化趋势是明确的,这自然保证了极限的存在。

总结来说,极限是连续性的表现可导和可微是更强的条件

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值