多元函数-连续 偏导 可微
文章目录
定义
1.连续定义
设二元函数 f ( P ) = f ( x , y ) f(P) = f(x,y) f(P)=f(x,y)的定义域为D, P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0,y0)为D的聚点,且 P 0 ∈ D P_0 \in D P0∈D,若
l i m ( x , y ) → ( x 0 , y 0 ) f ( x , y ) = f ( x 0 , y 0 ) \displaystyle lim_{(x,y)\to(x_0,y_0)}f(x,y) = f(x_0,y_0) lim(x,y)→(x0,y0)f(x,y)=f(x0,y0)
则称函数 f ( x , y ) f(x,y) f(x,y)在 P 0 P_0 P0连续
聚点:如果给定任意的 δ > 0 \delta > 0 δ>0,点P的去心领域 U ( P , δ ) U(P,\delta) U(P,δ)内总有E的点,那么称P是E的聚点
2.偏导定义
设函数 z = f ( x , y ) z=f(x,y) z=f(x,y)在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)的某一领域内有定义,当 y y y固定在 y 0 y_0 y0,而x在 x 0 x_0 x0处有增量 Δ x \Delta x Δx时,相应的函数有增量
f ( x 0 + Δ x , y 0 ) − f ( x 0 , y 0 ) \displaystyle f(x_0+\Delta x,y_0) - f(x_0,y_0) f(x0+Δx,y0)−f(x0,y0)
如果
l i m Δ x → 0 f ( x 0 + Δ x , y 0 ) − f ( x 0 , y 0 ) Δ x \displaystyle lim_{\Delta x \to 0} \frac{f(x_0+\Delta x,y_0) - f(x_0,y_0)}{\Delta x} limΔx→0Δxf(x0+Δx,y0)−f(x0,y0)
存在,那么称此极限为函数 z = f ( x , y ) z = f(x,y) z=f(x,y)在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处对 x x x的偏导数,记作
∂ z ∂ x ∣ x = x 0 , y = y 0 \displaystyle \frac{\partial z}{\partial x}|_{x=x_0,y=y_0} ∂x∂z∣x=x0,y=y0 , ∂ f ∂ x ∣ x = x 0 , y = y 0 \displaystyle \frac{\partial f}{\partial x}|_{x=x_0,y=y_0} ∂x∂f∣x=x0,y=y0, Z x ∂ x ∣ x = x 0 , y = y 0 \displaystyle \frac{Z_x}{\partial x}|_{x=x_0,y=y_0} ∂xZx∣x=x0,y=y