极限存在,连续,可导,可微,可偏导的关系

一元函数

极限存在不能推出连续,但是连续该点极限一定存在。
该点连续但该点不一定可导,但可导该点一定连续。
一元情况下可导和可微是等价关系。

二元以及多元函数

以二元函数为例子说明

极限存在不能推出该点连续,但该点连续极限一定存在。
该点连续和该点可偏导是不相关的两个条件,彼此都不能推出。
偏导连续说明偏导存在,但偏导存在不一定偏导连续。
该点连续不能说明可微,但可微说明该点连续。
该点可偏导不能说明该点可微,前者只是后者的必要条件。
该点可微不能说明偏导一定连续,但是偏导连续一定可微分。
用图来串起他们的关系,并补充使得推导不成立的例子

tips

实际上可以偏导连续是最强的条件(可以推出可微),可微是较强的条件。

关于可微和可导(可偏导的关系)

在一元函数里,可导实际上就是该点存在切线,但可微指的是该切线可以在该点很好的拟合原函数,也就是可以在该点用切线来替代原函数。
类似的,在二元函数中,可偏导说明线性量存在,可微说明可以用这个线性量来拟合原函数。

在数学分析中,特别是在多元函数的领域,"可微"、"偏导"和"偏导连续"以及"连续"这几个概念之间存在紧密的联系。 1. **可微**(Differential):如果一个多变量函数在其定义域内的一点上,其所有偏导数都存在并且该点处的函数值也存在,则称这个函数在这点上可微。这是微分学的基本概念,意味着函数在这一点附近可以用线性近似来描述。 2. **偏导数**(Partial Derivative):对于一个多元函数来说,每个自变量的导数称为对应的偏导数。比如对函数f(x, y)而言,∂f/∂x表示x对f的偏导数,∂f/∂y表示y对f的偏导数。 3. **偏导连续**(Continuous Partial Derivatives):如果一个函数的所有偏导数在某一点上都是存在的,并且这些偏导数在该点的值也是连续的,那么我们说函数在这一点具有偏导数的连续性。这是一个更弱的条件,即使函数本身可能不连续。 4. **连续性**(Continuity):对于单变量函数,如果它的图像是一个没有间断点的曲线,我们就说它是连续的。对于多变量函数,若函数值对于输入的变化是连续变化的,即在某一点的极限值等于该点的函数值,则称函数在这个点连续。 总结一下关系: - 如果一个函数在某一点既可微偏导连续,那么它在那一点必定是连续的。 - 反之,如果一个函数在某点连续,但偏导数不存在或不连续,函数并不一定可微。 - 偏导连续只是可微的一个必要条件,而不是充分条件,因为还要求函数值本身存在
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值