极限存在,连续,可导,可微,可偏导的关系

一元函数

极限存在不能推出连续,但是连续该点极限一定存在。
该点连续但该点不一定可导,但可导该点一定连续。
一元情况下可导和可微是等价关系。

二元以及多元函数

以二元函数为例子说明

极限存在不能推出该点连续,但该点连续极限一定存在。
该点连续和该点可偏导是不相关的两个条件,彼此都不能推出。
偏导连续说明偏导存在,但偏导存在不一定偏导连续。
该点连续不能说明可微,但可微说明该点连续。
该点可偏导不能说明该点可微,前者只是后者的必要条件。
该点可微不能说明偏导一定连续,但是偏导连续一定可微分。
用图来串起他们的关系,并补充使得推导不成立的例子

tips

实际上可以偏导连续是最强的条件(可以推出可微),可微是较强的条件。

关于可微和可导(可偏导的关系)

在一元函数里,可导实际上就是该点存在切线,但可微指的是该切线可以在该点很好的拟合原函数,也就是可以在该点用切线来替代原函数。
类似的,在二元函数中,可偏导说明线性量存在,可微说明可以用这个线性量来拟合原函数。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值