【图像融合】基于联合双边滤波和局部梯度能量的多模态医学图像融合研究(Matlab代码实现)

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、图像、文章


💥1 概述

基于联合双边滤波和局部梯度能量的多模态医学图像融合。作为生物医学诊断的强大辅助技术,近年来已成为热门话题。然而,对于许多医学图像融合算法来说,在融合性能、时间消耗和噪声鲁棒性之间的权衡仍然是一个巨大挑战。本文提出了一种有效、快速和稳健的医学图像融合方法。通过联合双边滤波引入了两层分解方案,能量层包含丰富的强度信息,结构层捕获了丰富的细节。然后,提出了一种基于结构张量和邻域能量的新型局部梯度能量算子,用于融合结构层,并引入了l1-max规则来融合能量层。在实验中对涵盖五种不同类别的医学图像融合问题的118对共注册医学图像进行了测试。比较了七种最新的代表性医学图像融合方法,并充分利用了六种代表性的质量评估指标来客观评价融合结果。广泛的实验结果表明,所提出的方法在视觉质量和定量评价方面均优于一些最新方法,并且实现了近乎实时的计算效率和对噪声的稳健性。

介绍
由于成像传感器和机制的多样性,不同模态的医学图像可能反映出各种组织/器官信息。对于解剖成像技术,计算机断层扫描(CT)图像对于密集结构(如骨骼和植入物)非常敏感。然而,CT图像无法捕获软组织的详细信息。磁共振(MR)图像显示了高空间分辨率的软组织结构的解剖对比,但无法检测人体代谢活动的活动信息。MR-T1图像在一定程度上准确反映了解剖结构。相比之下,MR-T2提供了组织病变的细节。对于功能图像,正电子发射断层扫描(PET)图像可以反映细胞和分子的生物活动,单光子发射计算机断层扫描(SPECT)图像可以显示组织/器官在分子水平上的代谢活动信息。然而,PET和SPECT的空间分辨率相对较低。为了准确描述病灶,医生通常需要综合分析多种不同模态的医学图像,这可能不可避免地给临床应用带来一些不便和低效率。

📚2 运行结果

部分代码:

%% RGB to YUV
B_YUV=ConvertRGBtoYUV(B);   
BB=B_YUV(:,:,1);            
E1 = RollingGuidanceFilter(A,s,r,1);    
E2 = RollingGuidanceFilter(BB,s,r,1);
S1= A-E1;                  S2= BB-E2;
LGE1=STO(S1).*local_energy(S1,N);         
LGE2=STO(S2).*local_energy(S2,N);
map=(LGE1>LGE2);
map=majority_consist_new(map,T);        
FS=map.*S1+~map.*S2;                    % fused structure layer                
map2=abs(E1>E2);
FE= E1.*map2+~map2.*E2;                 % fused energy layer               
F=FE+FS;                                % temp fused result    

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

🌈4 Matlab代码、图像、文章

### 关于红外与可见光图像融合中的特征点提取 在处理电气设备同一场景下的红外与可见光图像时,由于两者物理特性的显著差异,在一致特征的提取匹配方面存在挑战[^1]。为了克服这一难题并有效实现图像间的配准与融合研究者们提出了多种基于特征点的方法技术。 #### 基于SIFT/SURF特征描述子的技术 尺度不变特征变换(Scale-Invariant Feature Transform, SIFT)[^3] 加速稳健特征(Speeded-Up Robust Features, SURF) 是广泛应用于多模态图像配准过程中的局部特征检测器及描述符。这些算法能够识别出具有独特几何结构的关键点,并通过计算其周围邻域内的梯度方向直方图来构建描述向量。尽管如此,对于跨模态数据集而言,单纯依赖传统视觉字典可能不足以充分表征不同成像机制带来的变化;因此,通常还需要引入额外约束条件或改进策略以提高鲁棒性准确性。 #### 多通道卷积神经网络(Multi-channel Convolutional Neural Networks) 近年来,随着深度学习的发展,利用预训练好的CNN模型作为骨干网路来进行端到端的学习成为了一种趋势。具体来说,可以设计一个多输入分支架构——其中一个路径专门用于接收RGB空间下的彩色图片而另一个负责解析热辐射强度分布情况所对应的灰阶影像。经过若干层非线性映射操作之后,最终输出联合表示形式供后续任务调用。这种方法不仅继承了人工工程化算子的优点而且具备更强自适应能力去捕捉潜在关联模式[^4]。 #### 图像增强辅助特征提取 值得注意的是,在执行上述任何一种方案之前,适当的预处理步骤同样至关重要。特别是当面对低质量源材料时(比如噪声污染严重或者对比度过低),先期采取诸如直方图均衡化、Retinex理论指导下的色彩校正以及双边滤波等措施有助于提升目标区域轮廓清晰度进而促进更精准定位工作开展[^2]。 ```matlab % MATLAB代码片段展示如何加载一对测试样本并对齐它们之间的坐标系关系 clear; clc; I_rgb = imread('visible.jpg'); % 加载可见光图像 I_ir = imresize(imread('thermal.png'), size(I_rgb)); % 调整大小使二者尺寸相同 figure(1); imshowpair(I_rgb,I_ir,'montage'); % 应用SURF特征探测器寻找稳定兴趣点位置 pts_rgb = detectSURFFeatures(rgb2gray(I_rgb)); pts_ir = detectSURFFeatures(I_ir); % 提取对应描述符以便建立初步候选集合 [ftr_rgb, locs_rgb] = extractFeatures(rgb2gray(I_rgb), pts_rgb); [ftr_ir , locs_ir ] = extractFeatures(I_ir , pts_ir ); % 使用KDTree搜索最近邻居完成粗略匹配流程 indexPairs = matchFeatures(ftr_rgb,ftr_ir,... 'MaxRatio',0.7,... % Lowe's ratio test threshold 'MatchThreshold',8); % Hamming distance upper bound matched_pts_rgb = locs_rgb(indexPairs(:,1),:); matched_pts_ir = locs_ir (indexPairs(:,2),:); % 可视化显示结果验证正确与否 showMatchedFeatures(I_rgb, I_ir, matched_pts_rgb, matched_pts_ir); ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值