【图像融合】基于联合双边滤波和局部梯度能量的多模态医学图像融合研究(Matlab代码实现)

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、图像、文章


💥1 概述

基于联合双边滤波和局部梯度能量的多模态医学图像融合。作为生物医学诊断的强大辅助技术,近年来已成为热门话题。然而,对于许多医学图像融合算法来说,在融合性能、时间消耗和噪声鲁棒性之间的权衡仍然是一个巨大挑战。本文提出了一种有效、快速和稳健的医学图像融合方法。通过联合双边滤波引入了两层分解方案,能量层包含丰富的强度信息,结构层捕获了丰富的细节。然后,提出了一种基于结构张量和邻域能量的新型局部梯度能量算子,用于融合结构层,并引入了l1-max规则来融合能量层。在实验中对涵盖五种不同类别的医学图像融合问题的118对共注册医学图像进行了测试。比较了七种最新的代表性医学图像融合方法,并充分利用了六种代表性的质量评估指标来客观评价融合结果。广泛的实验结果表明,所提出的方法在视觉质量和定量评价方面均优于一些最新方法,并且实现了近乎实时的计算效率和对噪声的稳健性。

介绍
由于成像传感器和机制的多样性,不同模态的医学图像可能反映出各种组织/器官信息。对于解剖成像技术,计算机断层扫描(CT)图像对于密集结构(如骨骼和植入物)非常敏感。然而,CT图像无法捕获软组织的详细信息。磁共振(MR)图像显示了高空间分辨率的软组织结构的解剖对比,但无法检测人体代谢活动的活动信息。MR-T1图像在一定程度上准确反映了解剖结构。相比之下,MR-T2提供了组织病变的细节。对于功能图像,正电子发射断层扫描(PET)图像可以反映细胞和分子的生物活动,单光子发射计算机断层扫描(SPECT)图像可以显示组织/器官在分子水平上的代谢活动信息。然而,PET和SPECT的空间分辨率相对较低。为了准确描述病灶,医生通常需要综合分析多种不同模态的医学图像,这可能不可避免地给临床应用带来一些不便和低效率。

📚2 运行结果

部分代码:

%% RGB to YUV
B_YUV=ConvertRGBtoYUV(B);   
BB=B_YUV(:,:,1);            
E1 = RollingGuidanceFilter(A,s,r,1);    
E2 = RollingGuidanceFilter(BB,s,r,1);
S1= A-E1;                  S2= BB-E2;
LGE1=STO(S1).*local_energy(S1,N);         
LGE2=STO(S2).*local_energy(S2,N);
map=(LGE1>LGE2);
map=majority_consist_new(map,T);        
FS=map.*S1+~map.*S2;                    % fused structure layer                
map2=abs(E1>E2);
FE= E1.*map2+~map2.*E2;                 % fused energy layer               
F=FE+FS;                                % temp fused result    

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

🌈4 Matlab代码、图像、文章

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值