✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
1. 多模态图像融合概述
多模态图像融合是指将来自不同模态(如可见光、红外、雷达等)的图像融合成一张新的图像,以增强图像的视觉效果和信息内容。多模态图像融合技术在许多领域都有着广泛的应用,如医学影像、遥感、机器人视觉等。
2. 多模态图像融合方法
目前,有多种多模态图像融合方法,每种方法都有其优缺点。常用的多模态图像融合方法包括:
-
**平均融合法:**将不同模态图像的像素值进行平均,得到融合后的图像。平均融合法简单易行,但融合后的图像可能会出现模糊和伪影。
-
**最大值融合法:**将不同模态图像中每个像素的最大值作为融合后的图像的像素值。最大值融合法可以保留图像中的细节,但融合后的图像可能会出现噪声和伪影。
-
**最小值融合法:**将不同模态图像中每个像素的最小值作为融合后的图像的像素值。最小值融合法可以去除图像中的噪声,但融合后的图像可能会出现模糊和伪影。
-
**加权平均融合法:**将不同模态图像的像素值根据权重进行加权平均,得到融合后的图像。加权平均融合法可以根据不同模态图像的重要性来调整权重,从而获得更好的融合效果。
-
**小波变换融合法:**将不同模态图像进行小波变换,然后将小波系数进行融合,最后将融合后的系数进行逆小波变换,得到融合后的图像。小波变换融合法可以保留图像中的细节和纹理,但计算量较大。
-
**非负矩阵分解融合法:**将不同模态图像表示为非负矩阵,然后将非负矩阵分解为多个子矩阵,最后将子矩阵进行融合,得到融合后的图像。非负矩阵分解融合法可以保留图像中的细节和纹理,但计算量较大。
3. 多模态图像融合应用
多模态图像融合技术在许多领域都有着广泛的应用,如:
-
**医学影像:**将来自不同模态的医学图像(如CT、MRI、PET等)融合成一张新的图像,以帮助医生诊断疾病。
-
**遥感:**将来自不同模态的遥感图像(如可见光、红外、雷达等)融合成一张新的图像,以帮助人们分析地物信息。
-
**机器人视觉:**将来自不同模态的机器人视觉图像(如可见光、红外、深度等)融合成一张新的图像,以帮助机器人感知周围环境。
4. 总结
多模态图像融合技术是一项重要的图像处理技术,它可以将来自不同模态的图像融合成一张新的图像,以增强图像的视觉效果和信息内容。多模态图像融合技术在许多领域都有着广泛的应用,如医学影像、遥感、机器人视觉等。
📣 部分代码
close all;
clear all
clc
global rpos;
rpos = rotatePosition(80);
addpath Function
addpath source image
chosen=8;
for ii=1:chosen
img1 = imread(['.\source image\image A\',num2str(ii),'.png']);
img2 = imread(['.\source image\image B\',num2str(ii),'.png']);
img3 = imread(['.\source image\image C\',num2str(ii),'.jpg']);
img1=im2double(img1);img2=im2double(img2);img3=im2double(img3);
if size(img1,3)>1
img1=rgb2gray(img1);
end
if size(img2,3)>1
img2=rgb2gray(img2);
end
if size(img3,3)>1
img3=rgb2gray(img3);
end
L1=SSF(img1,img1);
L2=SSF(img2,img2);
L3=SSF(img3,img3);
D1=img1-L1;
D2=img2-L2;
D3=img3-L3;
S1 = MUSML(D1);
S2 = MUSML(D2);
S3 = MUSML(D3);
S11= Gra(D1);S22= Gra(D2);S33= Gra(D3);
S11=real(S11);S22=real(S22);S33=real(S33);
SA=(S1).*S11;SB=(S2).*S22;SC=(S3).*S33;
MAP = abs(SA>SB);
MAP=MYZX(MAP);
FD1 = MAP.*D1+(1-MAP).*D2;
S4 = MUSML(FD1);S44= Gra(FD1);
SD=(S4).*S44;
FD = FD1.*(SD./(SC+SD))+D3.*(SC./(SC+SD));
E1=entropy(L1);
E2=entropy(L2);
E3=entropy(L3);
v1 = blkproc(L1,[3 3],[1,1],@dipin); v2 = blkproc(L2,[3 3],[1,1],@dipin); v3 = blkproc(L3,[3 3],[1,1],@dipin);
e1 = mean(v1(:));e2 = mean(v2(:));e3 = mean(v3(:));
E1 = E1.*e1; E2 = E2.*e2;E3 = E3.*e3;
FB2 = (E1./(E1+E2+E3)).*L1+(E2./(E1+E2+E3)).*L2+(E3./(E1+E2+E3)).*L3;
F= FB2+FD;
figure,imshow([img1,img2,img3,F]);
imwrite(F,['.\result\', num2str(ii),'.jpg']);
end
⛳️ 运行结果
🔗 参考文献
[1] 田智强,李皓冰,宋婧祎,等.一种基于多模态融合的MR图像3D语义分割方法及系统:CN202111453026.8[P].CN202111453026.8[2023-12-30].
[2] 陈文,郁芸,周梅红.基于Matlab的多模态医学图像融合仿真[J].电子技术与软件工程, 2017(2):2.DOI:CNKI:SUN:DZRU.0.2017-02-067.